

THIRD YEAR
LONG-TERM
MONITORING
ANNUAL REPORT LONG-TERM
MONITORING
OF SOLDIER CREEK
TINKER AFB
OKLAHOMA CITY,
OKLAHOMA
CONTRACT NUMBER
F34650-93-D-0109
ORDER 5025

Prepared for Department of the Air Force Tinker AFB Oklahoma City, Oklahoma

August 1999

FINAL

THIRD YEAR
LONG-TERM
MONITORING
ANNUAL REPORTLONG-TERM
MONITORING
OF SOLDIER CREEK
TINKER AFB
OKLAHOMA CITY,
OKLAHOMA
CONTRACT NO.
F34650-93-D-0109
ORDER 5025

Prepared for Department of the Air Force Tinker AFB Oklahoma City, Oklahoma

FINAL

THIRD YEAR LONG-TERM MONITORING ANNUAL REPORT FOR LONG-TERM MONITORING OF SOLDIER CREEK SEDIMENT AND SURFACE WATER OPERABLE UNIT

Document Prepared for:

Tinker Air Force Base Environmental Directorate OC-ALC/EM Tinker AFB, Oklahoma

405-734-3058

This Final Long-Term Monitoring Annual Report is intended for use by Tinker and regulatory personnel. The document incorporates sediment and surface water data collected by Woodward-Clyde Federal Services during the third year of long-term monitoring, and the human health risk assessment III (HHRA III).

Outline of Document

- Introduction
- Background
- Investigation Methods
- Human Health Risk Assessment III
- Discussion of Monitoring Results
- Conclusions and References

August 13, 1999 WCFS Project No. F96526

Department of the Air Force
Headquarters Oklahoma City Air Logistics Center (AFMC)
OC-ALC/PKOSS
ATTN: Sharon Beatty
7858 5th Street, Suite 1
Tinker AFB, Oklahoma 73145-9106

Subject: Submittal of Final Third Year Long Term Monitoring Annual Report

Long-Term Monitoring of Soldier Creek

Contract No. F34650-93-D-0109, Order No. 5025

WCFS Document Control No. F96526.39

Dear Ms. Beatty:

In accordance with your letter dated July 29, 1999, this letter transmits the Final Third Year Long Term Monitoring Annual Report-Long Term Monitoring of Soldier Creek. One copy is enclosed here and eight copies have been submitted directly to Mr. James Dawson.

If you have any questions regarding this submittal, please contact the undersigned.

Sincerely,

David C. Convy` Project Manager

cc: James Dawson

TABLE OF CONTENTS

Section		<u>Page</u>	
EXEC	UTIVE SUMMARY	0-1	
1.0	INTRODUCTION	1-1	
	 1.1 PURPOSE OF REPORT 1.2 REGULATORY BASIS 1.3 INVESTIGATION SCOPE AND OBJECTIVES 1.4 REPORT ORGANIZATION 	1-1 1-1 1-2 1-2	
2.0	BACKGROUND	2-1	
	 2.1 INSTALLATION DESCRIPTION AND HISTORY 2.2 SITE DESCRIPTION AND HISTORY 2.2.1 East Soldier Creek 2.2.2 West Soldier Creek 2.2.3 Previous Investigations 	2-1 2-3 2-4 2-6 2-7	
3.0	INVESTIGATION METHODS	3-1	
	 3.1 SAMPLING LOCATIONS AND LABELING 3.1.1 Sediment Sampling 3.1.2 Surface Water Sampling 3.1.3 Sample Identification 3.2 ANALYTICAL PARAMETERS 3.3 DECONTAMINATION PROCEDURES 3.4 QUALITY CONTROL/QUALITY ASSURANCE 	3-1 3-2 3-3 3-4 3-5 3-5 3-6	
4.0	HUMAN HEALTH RISK ASSESSMENTS	4-1	
5.0	DISCUSSION OF MONITORING RESULTS	5-1	
	5.1 DATA SCREENING 5.2 EVALUATION AND DISCUSSION OF RESULTS 5.2.1 Sediment 5.2.1.1 Metals 5.2.1.2 PCB's and Chlorinated Pesticides 5.2.1.3 Semivolatile Organics 5.2.1.4 Volatiles	5-1 5-2 5-3 5-3 5-4 5-9	

TABLE OF CONTENTS (Continued)

	5.2.1.5 Tentatively Identified Compounds 5.2.2.1 Surface Water 5.2.2.1 Metals 5.2.2.2 PCBs and Chlorinated Pesticides 5.2.2.3 Semivolatiles 5.2.2.4 Volatiles 5.2.2.5 Wet Chemistry 5.2.2.6 Tentatively Identified Compounds	5-9 5-10 5-10 5-11 5-11 5-12 5-12 5-12
6.0 CONO	CLUSIONS	6-1
	ERENCES	7-1
LIST OF TA	ABLES	
TABLE 2-1	Soldier Creek Outfalls and Associated Buildings/Structures	
TABLE 2-2	Summary of Previous Investigations and Activities Update	
TABLE 3-1	Long-Term Monitoring Stream Segment Boundaries	
TABLE 3-2	Semi-Annual Monitoring Sample Locations	
TABLE 3-3	Analytes and Reporting Limits	
TABLE 3-4	Analytes, Containers, Preservation, and Holding Times	
TABLE 5-1	Carcinogenic and Non-Carcinogenic Baseline Health Risk Assess	ment (BHRA)
	Screening Criteria for Sediment	
TABLE 5-2	Carcinogenic and Non-Carcinogenic Baseline Health Risk Assess	ment (BHRA)
	Screening Criteria for Surface Water	
TABLE 5-3	Carcinogenic and Non-Carcinogenic Human Health Risk Assessm Screening Criteria for Sediment	
TABLE 5-4	Carcinogenic and Non-Carcinogenic Human Health Risk	Assessment I
	(HHRA I) Screening Criteria for Surface Water	
TABLE 5-5	Statistical Evaluation of Analytes Detected in Sediment Sampl	es Third Year
	Long-Term Monitoring	
TABLE 5-6		
	Analytes Detected in Sediment Samples Third Year Long-Term N	
TABLE 5-7	Exceedances of Baseline Health Risk Assessment 10 ⁻⁶ Screenin	g Criteria to a
	Depth of One Foot	
TABLE 5-8	Exceedances of Human Health Risk Assessment I 10 ⁻⁵ Screening	Criteria

- TABLE 5-9 Exceedances of Human Health Risk Assessment I 10⁻⁶ Screening Criteria
- TABLE 5-10 Comparison of Long-Term Monitoring Maximum Analyte Concentrations with RI Results in Sediment
- TABLE 5-11 Statistical Evaluation of Analytes Detected in Surface Water Samples Third Year Long-Term Monitoring
- TABLE 5-12 Maximum Detected Concentrations and Associated Sample Locations for Analytes Detected in Surface Water Samples Third Year Long-Term Monitoring
- TABLE 5-13 Comparison of Long-Term Monitoring Maximum Analyte Concentrations with RI Results in Surface Water

LIST OF FIGURES

- FIGURE 2-1 Tinker Air Force Base Vicinity Map
- FIGURE 2-2 Soldier Creek Long-Term Monitoring Sampling Segments
- FIGURE 3-1 Soldier Creek Quarterly Monitoring Sampling Locations
- FIGURE 3-2 Soldier Creek Semi-Annual Monitoring Sampling Locations
- FIGURE 5-1 BHRA PAH Exceedances for 0-6 Inch Sediment Samples
- FIGURE 5-2a Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE01
- FIGURE 5-2b Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE02
- FIGURE 5-2c Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE03
- FIGURE 5-2d Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE04
- FIGURE 5-2e Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE05
- FIGURE 5-2f Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE06
- FIGURE 5-2g Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE07
- FIGURE 5-2h Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE08
- FIGURE 5-2i Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE09
- FIGURE 5-2; Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE10
- FIGURE 5-2k Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QE11
- FIGURE 5-21 Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QW02
- FIGURE 5-2m Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QW03
- FIGURE 5-2n Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QW04
- FIGURE 5-20 Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QW05
- FIGURE 5-2p Temporal Sediment PAH Concentration Gradient (0-6 inches bgs) QW06

FIGURE 5-3a	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	1Qtr1Yr - November 1994
FIGURE 5-3b	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	2Qtr1Yr - January 1995
FIGURE 5-3c	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	3Qtr1Yr - April 1995
FIGURE 5-3d	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	4Qtr1Yr - July 1995
FIGURE 5-3e	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	1Qtr2Yr - October 1995
FIGURE 5-3f	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	2Qtr2Yr - March 1996
FIGURE 5-3g	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	3Qtr2Yr - May 1996
FIGURE 5-3h	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	4Qtr2Yr - August 1996
FIGURE 5-3i	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	1Evnt3Yr - January 1997
FIGURE 5-3j	East Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	2Evnt3Yr - July 1997
FIGURE 5-4a	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	1Qtr1Yr - November 1994
FIGURE 5-4b	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	2Qtr1Yr - January 1995
FIGURE 5-4c	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	3Qtr1Yr - April 1995
FIGURE 5-4d	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	4Qtr1Yr - July 1995
FIGURE 5-4e	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs
	1Qtr2Yr - October 1995
FIGURE 5-4f	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs
	2Qtr2Yr - March 1996

TABLE OF CONTENTS (Continued)

FIGURE 5-4g	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	3Qtr2Yr - May 1996
FIGURE 5-4h	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	4Qtr2Yr - August 1996
FIGURE 5-4i	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	1Evnt3Yr - January 1997
FIGURE 5-4j	West Soldier Creek Sediment PAH Concentration Gradient (0-6 inches bgs)
	2Evnt3Yr - July 1997

LIST OF APPENDICES

APPENDIX A Human Health Risk Assessment

APPENDIX B Supporting Tables

LIST OF ACRONYMS

1Qtr1Yr First Quarter First Year

2Qtr1Yr Second Quarter First Year

3Qtr1Yr Third Quarter First Year

4Qtr1Yr Fourth Quarter First Year

1Qtr2Yr First Quarter Second Year

2Qtr2Yr Second Quarter Second Year

3Qtr2Yr Third Quarter Second Year

4Qtr2Yr Fourth Quarter Second Year

1Evnt3Yr First Event Third Year

2Evnt3Yr Second Event Third Year

AOC Area of Concern

ACC Air Combat Command

AFB Air Force Base

AFMC Air Force Materiel Command

bgs Below Ground Surface

BHRA Baseline Health Risk Assessment

CAA Clean Air Act

CERCLA Comprehensive Emergency Response and Compensation Liability Act

COC Contaminant of Concern

CWA Clean Water Act

DERP Defense Environmental Restoration Program

DoD Department of Defense

DRMO Defense Reutilization and Marketing Office

EM Environmental Management

EPA Environmental Protection Agency

FFA Federal Facilities Agreement

HEAST Health Effects Assessment Summary Tables

HHRA Human Health Risk Assessment

HI Hazard Indices

HPLC High Performance Liquid Chromatography

IRP Installation Restoration Program

d: tinker do26 annual.rpt annldft.doc 8/9/99

LIST OF ACRONYMS (Continued)

IRIS Integrated Risk Information System

I-40 Interstate Highway 40

IWTP Industrial Wastewater Treatment Plant

MCL Maximum Contaminant Level NCP National Contingency Plan

NPDES National Pollution Discharge Elimination System

NPL National Priority List

OSDH Oklahoma State Department of Health

OU Operable Unit

PAH Polyaromatic Hydrocarbon PCB Polychlorinated Biphenyl

QA Quality Assurance

QAPP Quality Assurance Project Plan QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment
RFI RCRA Facility Investigation

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

SARA Superfund Amendment and Reauthorization Act

STP Sanitary Treatment Plant

SVOC Semivolatile Organic Compounds SWMU Solid Waste Management Unit

TCE Trichloroethene

TIC Tentatively Identified Compound

TSCA Toxic Substance Control Act VOC Volatile Organic Compound

USAF United States Air Force

WCFS Woodward-Clyde Federal Services

d: tinker/do26 annual.rpt annldft.doc 8/9/99

Long-term monitoring of the Sediment and Surface Water Operable Unit of Soldier Creek at Tinker Air Force Base is conducted in response to the signed Record of Decision (ROD), dated September, 1993. The focus of the monitoring program is to evaluate sediment and surface water contamination from the Soldier Creek Sediment and Surface Water Operable Unit.

This report summarizes findings from the third year of long-term monitoring. The first year of monitoring is presented in the Final Quarterly Monitoring Annual Report (WCFS, 1997a). The second year of monitoring is presented in the Draft Second Year Quarterly Monitoring Report (WCFS, 1997b). The third year of long-term monitoring occurred in January and July 1997. During the third year of monitoring, a total of 74 sediment and 29 surface water samples were collected from East and West Soldier Creeks and a sample location on Tributary B. Surface water samples were collected prior to sediment sampling. Sediment samples were collected at three intervals from 0-6 inches, 6-12 inches and 3-5 feet below ground surface (bgs). When refusal of the sampling device occurred prior to 5 feet bgs, a sediment sample was typically collected from the bottom one foot interval of the boring.

Samples were analyzed for volatile organics, semi-volatile organics, metals, polychlorinated biphenyl's (PCBs), and pesticides. Surface water samples were also analyzed for the following wet chemistry parameters: alkalinity, chemical oxygen demand, hardness, total dissolved solids, total organic carbon, total suspended solids, chloride, and sulfate. Surface water and sediment samples from 0-6 inches bgs were analyzed for hexavalent chromium. Surface water measurements performed in the field included temperature, pH, conductivity, dissolved oxygen, and flow.

An evaluation of risks associated with Soldier Creek surface water and sediments was previously performed by B&V in the Baseline Health Risk Assessment (BHRA) (B&V, 1993a). Human Health Risk Assessments I & II (HHRA I & II) (WCFS, 1997a and b) were performed for the first and second years of long-term monitoring. As part of this project, the Human Health Risk Assessment III (HHRA III) was performed to provide updated information on potential current and future risks based on current surface water and

sediment contaminant levels, compare the results with those of the HHRA I and HHRA II to see if the previous conclusions are still valid, and develop updated cleanup goals that are protective of the human populations.

Screening criteria were based on exposure factors developed by the BHRA for human health under the RI/FS, and the HHRA I. Analyte concentrations detected in sediment and surface water were screened against these screening criteria. Unacceptable exposures were determined based on the following criteria:

- Contaminant concentrations in sediment or surface water exceeding health levels based on an excess lifetime cancer risk of 10⁻⁴
- Contaminant concentrations in sediment or surface water with noncarcinogenic hazard indices (HIs) greater than 1.0

Contaminant concentrations detected in the 10^{-4} to 10^{-6} range may potentially indicate an unacceptable exposure level and were also evaluated.

Surface water analyte concentrations from the third year of monitoring did not exceed any of the screening criteria set forth in the BHRA and the HHRA I.

Sediment analyte concentrations from the third year of monitoring did not exceed the 10⁻⁴ screening criteria set forth in the BHRA and the HHRA I. However, the HHRA I noncarcinogenic hazard screening criteria for aroclor 1254 was exceeded at one location in segment QW03 on West Soldier Creek.

BHRA 10⁻⁶ screening criteria were exceeded by five semivolatile (SVOCs) classified as polyaromatic hydrocarbons (PAHs). These include benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and chrysene. HHRA I 10⁻⁶ screening criteria were exceeded by three PAHs benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene. HHRA I 10⁻⁵ screening criteria were exceeded by benzo(a)pyrene in sediment samples. Based on the ROD, exceedance of these 10⁻⁵ and 10⁻⁶ screening criteria may potentially indicate a need to evaluate if the exposure is unacceptable.

The results of the risk characterization indicate that for all scenarios, potential cancer risks are below or within the USEPA advisory range of 10^{-6} to 10^{-4} and the USEPA noncarcinogenic health hazard of 1.0. These results indicate that exposure to surface water and sediments in West and East Soldier Creeks is not likely to result in an unacceptable cancer risk or noncarcinogenic hazard for any on-base or off-base populations under current or future stream use conditions.

The results of the HHRA III were compared to those from the two previous HHRAs (1997 a and b). In general, no dramatic changes between the first two HHRAs and the HHRA III were identified as part of a trend analysis. Therefore, no definitive statement can be made regarding trends at East and West Soldier Creeks based on these results. Although the Area 4 (off-base East Soldier Creek) cancer risks show a steady decline from HHRA I to HHRA III. The differences in estimated noncarcinogenic adverse health effects and carcinogenic risks are due to changes in contaminant concentrations and chemicals which were detected in the sediments and surface water. These differences are expected because the stream is a dynamic system affected by such factors as precipitation levels. Effluent outfall flow and concentrations also impact the dynamics of the stream system.

Despite slight differences in approach between the HHRAs and the BHRA, all risk assessments have concluded that there are no unacceptable cancer risks or non-carcinogenic hazards associated with exposure to East or West Soldier Creeks for any on-base or off-base populations, under current of future stream use conditions. Thus no remedial action appears to be warranted based on risks to human health.

1.1 PURPOSE OF REPORT

This work was performed under Contract No. F34650-93-D-0109, Orders 5014 and 5025 between Tinker AFB and WCFS. The third year of long-term monitoring was performed on a semi-annual basis, and occurred in January and July 1997. This report describes the sampling methods, analytical results, and conclusions of the third year of long-term monitoring.

Results of the first year of quarterly monitoring is presented in the Final Quarterly Monitoring Annual Report (WCFS, 1997a). Results of the second year of quarterly monitoring is presented in the Draft Second Year Quarterly Monitoring Report (WCFS, 1997b).

1.2 REGULATORY BASIS

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986 established the Defense Environmental Restoration Program (DERP) for the U.S. Department of Defense (DoD) to clean up past hazardous waste disposal and spill sites nationwide. In 1980, the United States Air Force (USAF) began implementing the DoD Installation Restoration Program (IRP). The IRP is designed to identify and evaluate suspected problems associated with past hazardous waste management practices, including impacts on human health and the environment.

Two sites located within Tinker AFB, Building 3001 and Soldier Creek, were listed on the CERCLA National Priority List (NPL) in 1987. Tinker AFB, EPA Region VI, and the Oklahoma State Department of Health (OSDH) signed a Federal Facilities Agreement (FFA) (Administrative Docket Number NPL-U3-2-27) under Section 120 CERCLA in December 1988. The intent of this agreement is to ensure that past and present activities of Tinker AFBs NPL sites are thoroughly investigated and appropriately remediated to protect the public health, welfare, and the environment.

Long-term Monitoring of the Sediment and Surface Water Operable Unit of Soldier Creek at Tinker Air Force Base (Tinker AFB) was conducted in response to the signed Record of Decision (ROD), dated September, 1993.

1.3 INVESTIGATION SCOPE AND OBJECTIVES

The focus of this monitoring program is sediment and surface water contamination from the Soldier Creek Sediment and Surface Water Operable Unit (OU) from the headwaters of East and West Soldier Creeks to Interstate Highway 40 (I-40). The Soldier Creek OU is located in the northeast portion of Tinker AFB and was identified in the ROD as a potential threat to human health and the environment. The objective of long-term monitoring is to evaluate analytical results of sediment and surface water samples for exceedance of health based cleanup goals developed during the Baseline Health Risk Assessment (BHRA) (B&V, 1993a), and reported in the ROD (B&V, 1993b).

1.4 REPORT ORGANIZATION

This report describes the results of the third year of long-term monitoring of the Soldier Creek OU.

Section 1 is the introduction describing the purpose of this report, the regulatory basis of the study, and the objectives and scope of the monitoring program

Section 2 describes Tinker AFB and the project site. This section also summarizes site history and previous investigations

Section 3 describes sampling methods used during quarterly monitoring of sediments and surface water

Section 4 contains a brief summary of the Human Health Risk Assessment III presented in Appendix A

Section 5 contains a review and discussion of sampling results and analytical exceedances of screening criteria

Section 6 presents conclusions from the third year of long-term monitoring

Section 7 presents the list of references cited

2.1 INSTALLATION DESCRIPTION AND HISTORY

Tinker AFB is located in Oklahoma County in central Oklahoma approximately 8 miles southeast of downtown Oklahoma City. The base is bounded by Sooner Road to the west, Douglas Boulevard to the east, I-40 to the north, and Southeast 74th Street to the south. The base is comprised of approximately 5,277 acres. Municipalities of the metro area which adjoin Tinker AFB are Midwest City to the north, Del City to the northwest, and Oklahoma City to the east, south, and southwest (Figure 2-1). Midwest City and Del City are heavily populated with mixed residential and commercial areas. The area under Oklahoma City jurisdiction is lightly developed residential.

To attract the war industries in the early 1940's, Oklahoma City donated the land required for the facility and offered necessary improvements at no cost to the War Department. The Oklahoma Industries Foundation was established to bid for a military maintenance and supply depot and to acquire the land for the site. Oklahoma City was considered a favorable location for the depot for several reasons, including mild winters, flat terrain, and strategic location near the geographic center of the United States. During this period, Midwest City was formed as a new town to provide housing and community facilities for the air depot. The original site, consisting of 960 acres, was selected by the Army on May 21, 1941, seven months before the United States officially entered World War II.

The name designations for the Oklahoma City Air Depot and Tinker Air Field have changed several times over the life of the base, as the depot and air base were redesignated and reorganized. Tinker AFB was officially known as Midwest Air Depot during its construction, and then as the Oklahoma City Air Depot after it was activated. In January 1943, the name of the depot was officially changed to Oklahoma City Air Depot Control Area Command. In May 1943, the name was changed to Oklahoma Air Technical Area Service Command to reflect new responsibilities at the depot. The name changed again in July 1946, to Oklahoma City Air Material Area. In 1974, the depot was redesignated Oklahoma City Air Logistic Center to reflect the last change in function at the depot.

Pressure from local citizens was instrumental in the decision to name the air field at the depot "Tinker Field", honoring General Clarence L. Tinker. Tinker was an Osage Indian who died in 1942 while leading a bomber strike against the Japanese at Wake Island. Tinker Field became "Tinker Air Force Base" on January 13, 1948. Subsequently, the base became the worldwide repair depot for B-36 and B-45 aircraft, as well as a multitude of other weapons and engines.

The Oklahoma City Air Depot was partially operational in 1942. Tinker Air Field was built adjacent to and concurrently with the depot. The Douglas Cargo Airplane Plant was built in 1942-1943 to manufacture specially modified DC-3s. The depot and aircraft plant shared Tinker Air Field. After World War II, the Douglas Cargo Aircraft Plant was closed and the Air Depot took over the buildings and expanded the Base operations, to include facilities for testing and overhauling jet engines. During this time, Tinker AFB became involved in jet engine overhaul and, later, modification of aircraft from storage as part of a massive program to rebuild the nation's air power.

The Korean and the Cold War occurred during 1950-1959. As the decade began, the Tinker work force was much smaller than in the World War II days. The base was still a major employer with 10,000 people and was the home of the largest Air Depot in the United States.

TAFB was involved in many events that took place as the decade of the sixties unfolded. Tinker was one of the most active bases in the Air Force during the Cuban missile crisis, as aircraft used the installation as a stepping stone to and from the southeastern part of the United States. Even before this, Tinker's central location helped rank it fifth in takeoff and landing activity among all non-training Air Force bases.

During the early 1970s, the F-4 phantom became an important specialized repair workload at TAFB. On February 28, 1977, OC-ALC was named provisional manager of the ground launched cruise missile.

An important development during the 1980s was the increased emphasis on environmental management. In 1985, a separate Directorate of Environmental Management (EM) was formed at Tinker. The new Directorate incorporated functions related to environmental laws such as the Clear Air Act (CAA), Clean Water Act (CWA), Resource Conservation and

Recovery Act (RCRA), CERCLA as amended by SARA, and Toxic Substances Control Act (TSCA).

As early as 1983, measures to remediate sites at Tinker AFB contaminated by past activities were being undertaken under the Air Force IRP. As part of the overall IRP, Tinker AFB began a preliminary assessment of previous waste disposal sites in 1981. As a result of a basewide sampling program in 1983, which detected trichloroethene (TCE) in the groundwater, extensive investigations were conducted in and around Building 3001. Two sites, Building 3001 and Soldier Creek were listed on the CERCLA NPL in 1987. In 1988, Tinker AFB signed the FFA with EPA and the State of Oklahoma to remediate these sites. A RCRA Facility Assessment (RFA) conducted in May 1989 identified 105 Solid Waste Management Units (SWMUs) and nineteen Areas of Concern (AOCs).

The base was issued a RCRA Part B permit on July 1, 1991. The permit specified that a RCRA Facility Investigation (RFI) be conducted for forty-three SWMUs and two AOCs. The Directorate of Environmental Management has now grown to approximately eighty personnel and works closely with the Bioenvironmental Office and the Office of Safety.

In 1992, major organizational changes occurred in response to the end of the cold war and the down sizing of the entire military structure. Of most importance to the OC-ALC is the fact that on July 1, 1992, its parent command, Air Force Logistics Command (AFLC), was merged with the Air Force Systems Command to form the Air Force Materiel Command (AFMC). The new command comprises 52 percent of the Air Force budget. Eighteen percent of all Air Force personnel and 42 percent of the civilian workforce are assigned to the new command.

During 1992, the L-62 Strategic Communications Wing of the U.S. Navy was installed at Tinker AFB. The L-62 Strategic Communications Wing is composed of two squadrons of aircraft that maintain communications with the Navy's submarines.

2.2 SITE DESCRIPTION AND HISTORY

The Soldier Creek Sediment and Surface Water OU was defined by the ROD as the two unnamed tributaries to Soldier Creek that originate on Tinker AFB (Figure 2-2). The

tributary east of Building 3001 is designated East Soldier Creek and the tributary west of Building 3001 is designated West Soldier Creek. The boundaries for the study were:

- All sediment and surface water of East Soldier Creek that originates on Tinker AFB to the intersection of East Soldier Creek and I-40 north of Tinker AFB
- All sediment and surface water of West Soldier Creek that originates on Tinker AFB to the intersection of West Soldier Creek and I-40 north of Tinker AFB

These initial boundaries included the ditches leading from the thirteen outfalls, eight of which are National Pollutant Discharge Elimination System (NPDES) outfalls, to East and West Soldier Creeks. The boundaries also included the lower portion of Tributary B, as defined in the Remedial Investigation/Feasibility Study (RI/FS) (B&V, 1993c), just upstream of its confluence with East Soldier Creek.

Data from the RI indicated that a contaminant concentration gradient exists to a point just south (upstream) of the study boundary. The study area boundary was established based on the following criteria:

- Limits of measurable levels of contaminants (as compared to background locations)
- Area of such size that a definitive assessment could be performed
- Allowance for source identification

2.2.1 East Soldier Creek

East and West Soldier Creeks drain the northeastern portion of Tinker AFB. Both streams are first-order (headwater) tributaries that have been substantially modified over the years (Figure 2-2). East Soldier Creek now originates where several storm sewers, known as Outfalls H. I, and J, emerge from the north side of 44th Street (north of Building 3705). The emerged portion of East Soldier Creek flows northward about 500 feet and is joined by a

tributary from the west which is fed by process effluent and cooling water blow-down (Outfall G). The combined flow continues about 630 feet northward along the east side of Building 3001 to a culvert at Bradley Drive, near which two storm water ditches (Outfalls M and L) enter from the west. This portion of the creek flows in a narrow channel through dense woods. The substrate is mainly bedrock (sandstone), with occasional areas of gravel and sand; virtually no fine-grained depositional sediment is present in this portion of East Soldier Creek.

After crossing under Bradley Drive, East Soldier Creek has a short stretch of flowing water and then becomes an elongated pond, about 600 feet long by 75 feet wide and terminating at a dam. Approximately midway along the pond a tributary fed from process effluent and storm water discharge (Outfall F) enters from the west. Except for the flowing stretch near Bradley Drive, the entire ponded portion of East Soldier Creek is depositional, with relatively thick organically rich silt and fine sand sediments.

Normal flows from the ponded portion of East Soldier Creek are diverted via underground piping through a concrete detention basin (former oil/water separator). Downstream from the dam the stream has a divided channel, the easternmost is fed by the culvert from the detention basin, and the westernmost of which during normal flow is backwater and during storm events is fed by the dam overflow. Between the dam and Douglas Boulevard, East Soldier Creek bends eastward. This stretch is about 400 feet long, varying from about 20 to 40 feet in width with sand, silt and gravel substrate and moderate flows. The Industrial Wastewater Treatment Plant (IWTP) and Sanitary Treatment Plant (STP) outfall to East Soldier Creek is located about a third of the way between the dam and Douglas Boulevard. The IWTP receives industrial process wastewater for treatment from the Building 3001, as well as process wastewater from other industrial sources throughout the base, via a network of underground piping. In April 1996, the IWTP/STP discharge was rerouted to the Oklahoma City Public Owned Treatment Works, and discharge to East Soldier Creek ceased. The IWTP is currently utilized for pretreatment of industrial waste. In case of emergency, discharges to East Soldier Creek from the IWTP/STP may occur under NPDES Permit OK1571724391.

Near where the stream exits Tinker under Douglas Boulevard, a large storm water conveyance enters from the north. Beyond Douglas Boulevard, East Soldier Creek flow east-northeastward about 800 feet and is joined by an intermittent tributary (Tributary B) from the

south. The stream then flows north-northeast about 1,200 feet to I-40. This off-base stretch is in a deeply incised channel with steep clay banks, surrounded by commercial and residential property near Douglas Boulevard and riparian woodlands beyond Tributary B. Tributary B headwaters are located just upstream of S.E. 36th Street where it flows northward to its confluence with East Soldier Creek north of S.E. 36th Street and east of Douglas Boulevard. East Soldier Creek begins to assume a quasi-natural riffle-and-pool configuration in this stretch, with natural substrates predominated by gravel, sand, and silt. There are also substantial amounts of concrete rubble and other anthropogenic debris (e.g., discarded appliances, automobile parts, household trash) in this section of the stream. Beyond I-40, East Soldier Creek flows northward to its confluence with the mainstream of Soldier Creek, which originates off-base near Southeast 59th Street, about 1.5 miles south-southeast of the Building 3001 Complex.

Table 2-1 presents the buildings and associated outfalls which contribute discharge to East Soldier Creek.

2.2.2 West Soldier Creek

West Soldier Creek starts between the Tinker North/South runway and Building 3001 in a broad grassy swale (Figure 2-2). It flows northward about 3,500 feet and is fed by runoff from the runways and the area west of Building 3001 and from several outfalls (Outfalls A, B, C, D, and E), which normally discharge very little to no water. Table 2-1 presents the buildings and associated outfalls which contribute discharge to West Soldier Creek.

The drainage continues to a point opposite the north end of Building 3001, enters a storm sewer, and emerges off-base from under Industrial Road to flow parallel to and then cross under I-40. A small tributary, which drains the north parking lot to Building 3001, and undeveloped Tinker property, joins West Soldier Creek off-base, midway between Industrial Road and I-40. The off-base reach of West Soldier Creek is moderately incised, with substrates consisting of bedrock, gravel, sand, and substantial amounts of concrete rubble. Riparian habitat consists of a narrow band of trees along most of the highway side, and wooded slope on the base side. This reach is approximately 500 feet long and is divided by a spill containment structure midway from its emergence from on-base Tinker and the culverts at I-40. North of I-40, West Soldier Creek flows northeastward through a mixed residential/commercial area and joins the mainstream of Soldier Creek, just west of Douglas

Boulevard. From this point, Soldier Creek flows north-northwest approximately 3 miles to join Crutcho Creek, which continues northward about 2 miles and enters the North Fork of the Canadian River.

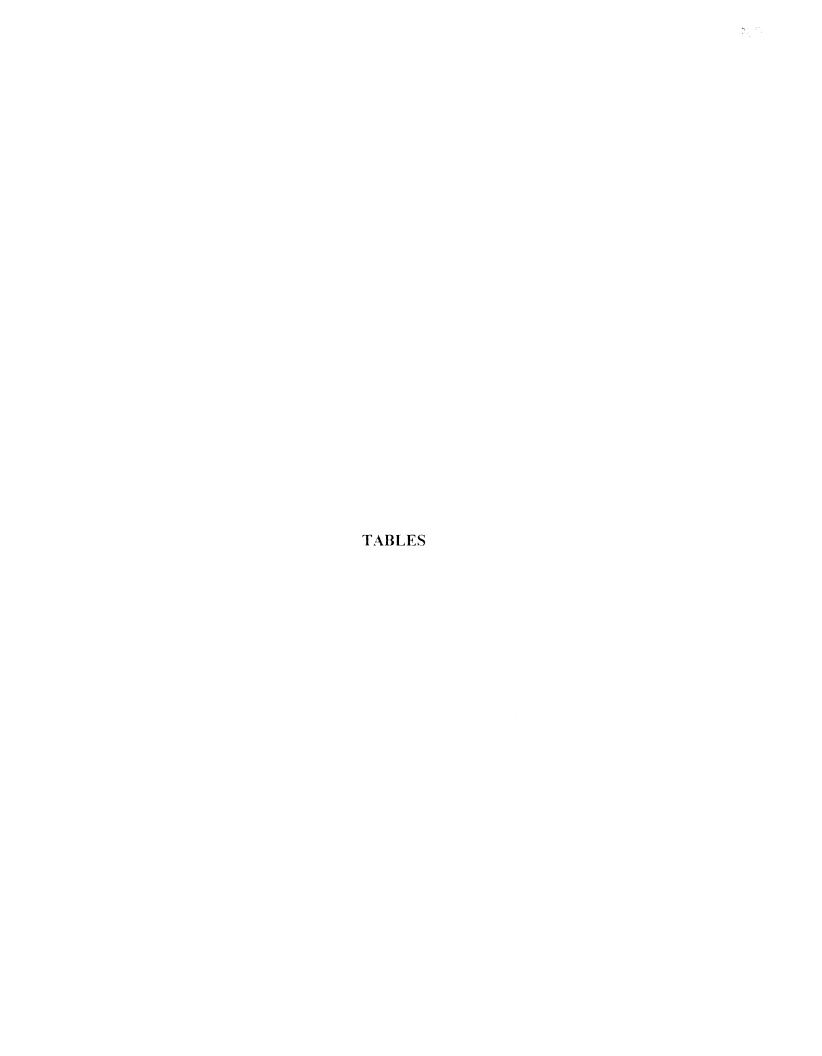
2.2.3 Previous Investigations

Table 2-2 presents a brief summary of previous activities conducted on or near the Soldier Creek OU under the IRP. On July 22, 1987, the Building 3001 Site and Soldier Creek Site were added to the NPL. In 1990 and 1991, B&V conducted a Phase I and a Phase II RI/FS to determine the extent of sediment and surface water contamination along East, West and Main Soldier Creek. The baseline health risk assessment performed by B&V (1993a) determined that the sediment and surface water of the Soldier Creek OU do not pose a risk to human health in excess of acceptable risk-based exposure levels established by the EPA. In accordance with the requirements of the ROD, the first year of Soldier Creek long-term monitoring occurred in November 1994, and January, April, and June 1995 and is presented in the Final Quarterly Monitoring Annual Report for Long-Term Monitoring of Soldier Creek Sediment and Surface Water Operable Unit (WCFS, 1997a). The second year of long-term monitoring occurred in October 1995, March, May, and August 1996 and is presented in the Draft Second Year Quarterly Monitoring Report for Long-Term Monitoring of Soldier Creek Sediment and Surface Water Operable Unit (WCFS, 1997b). Initial results of the ecological assessment of Soldier Creek is presented in the Final Ecological Assessment (WCFS, 1997c). Results for the additional ecological assessment, which occurred in June 1997, will be submitted under separate cover.

Sediment analyte concentrations from the first year of quarterly monitoring did not exceed the 10⁻⁴ screening criteria set forth in the BHRA and the HHRA. Therefore, according to the ROD, because contaminants of concern did not exceed the 10⁻⁴ screening criteria another alternative for remediation does not need to be evaluated (B&V, 1993b).

During the first year of quarterly monitoring, BHRA 10⁻⁶ screening criteria were exceeded by six PAHs (benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, and indeno(1,2,3-cd)pyrene), HHRA I 10⁻⁵ screening criteria were exceeded by one pesticide (heptachlor), and one PAH (benzo(a)pyrene), and HHRA I 10⁻⁶ screening criteria were exceeded by two pesticides (aldrin and heptachlor) and six semivolatiles (benzidine,

benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene).


The results of the HHRA I were compared to those presented in the BHRA. Despite slight differences in approach, both risk assessments concluded that there are no unacceptable cancer risks or non-carcinogenic hazards associated with exposure to East or West Soldier Creeks for any on-base or off-base populations, under current of future stream use conditions.

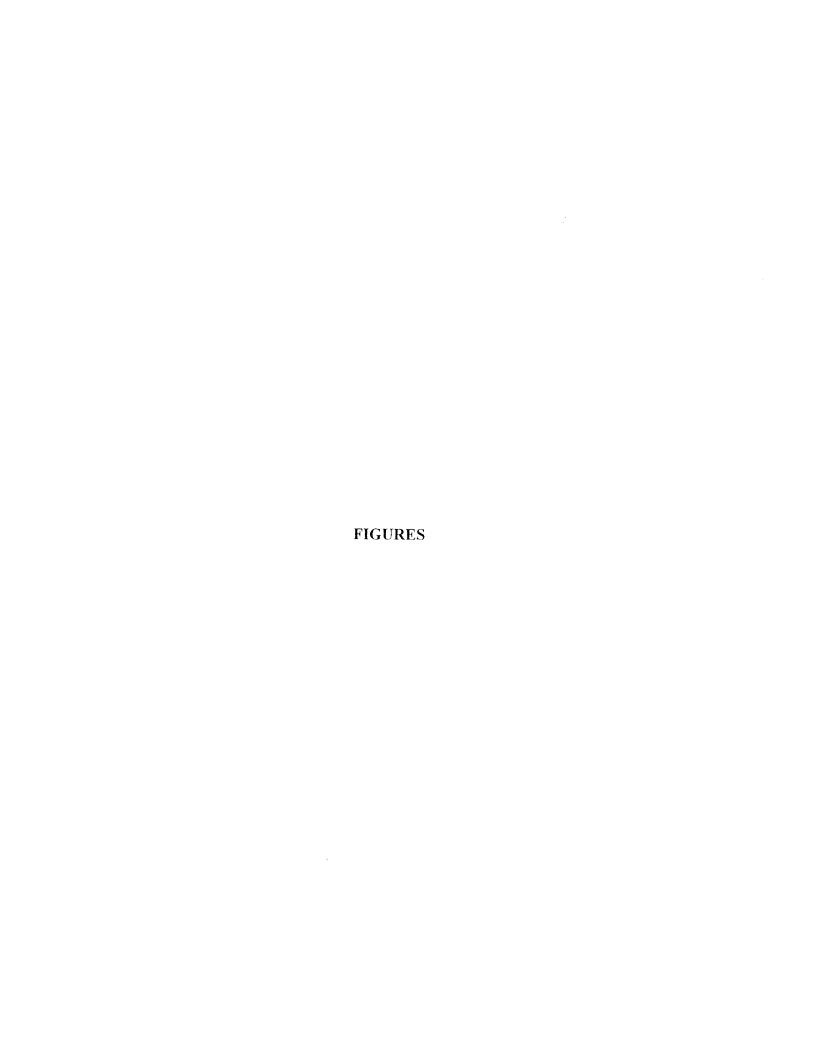
During the second year of quarterly monitoring, BHRA 10⁻⁶ screening criteria were exceeded by six SVOCs classified as PAHs (benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, and indeno(1,2,3-cd)pyrene), HHRA I 10⁻⁶ screening criteria were exceeded by two pesticides (aldrin and heptachlor) and six SVOCs (benzidine, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene), and HHRA I 10⁻⁵ screening criteria were exceeded by one pesticide (heptachlor), and one SVOC (benzo(a)pyrene) in sediment samples.

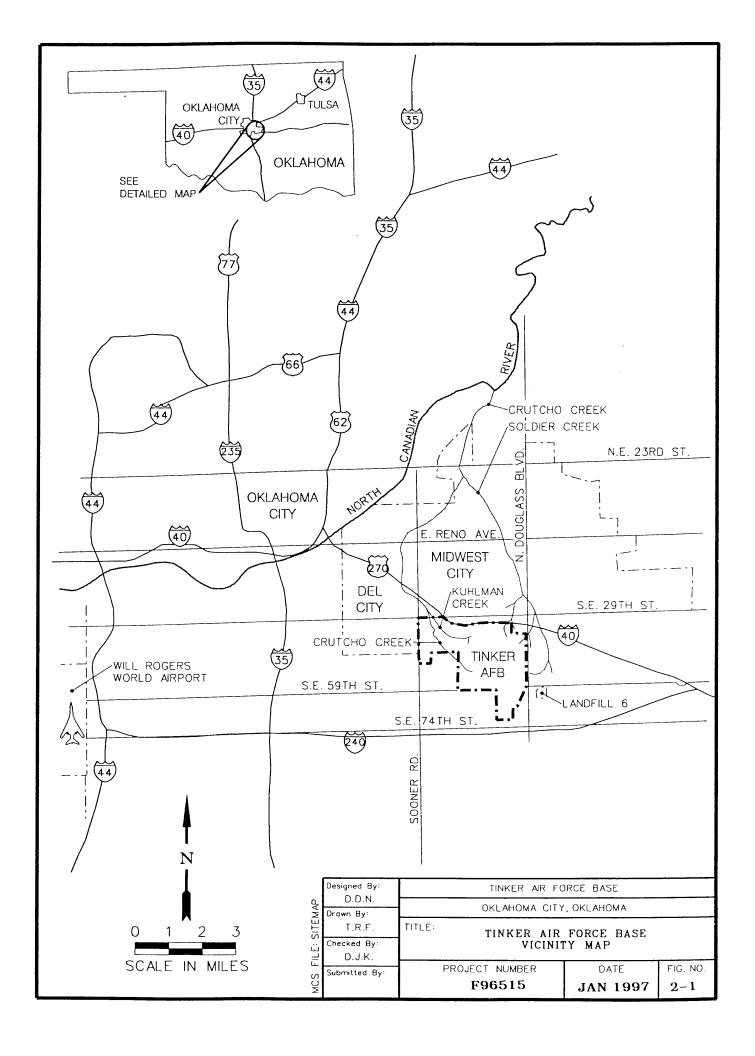
Sediment analyte concentrations from the second year of quarterly monitoring did not exceed the 10⁻⁴ screening criteria set forth in the BHRA and the HHRA I. However, at location QW03 the non-carcinogenic screening criteria for aroclor 1254 was exceeded.

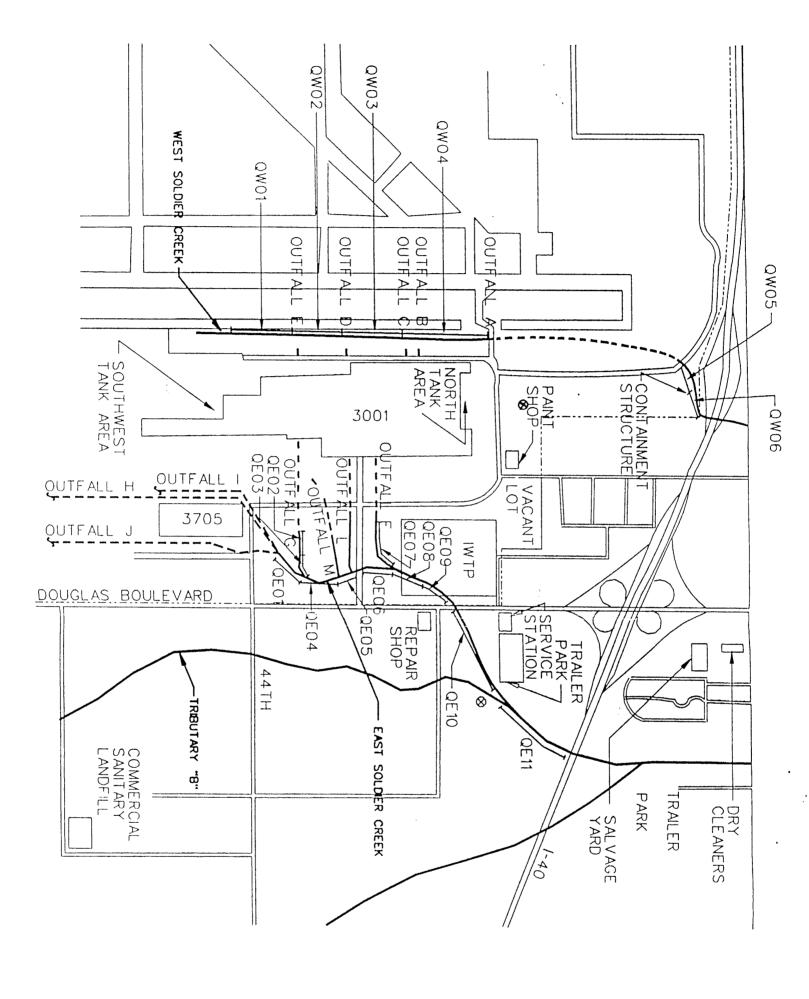
The results of the HHRA II were compared to those presented in the HHRA I. The results of the comparison between the HHRA I and HHRA II showed no dramatic changes. Although the non-carcinogenic screening criteria was exceeded by one sample on-base West Soldier Creek, under the worker scenario, the exceedance does not trigger an unacceptable non-carcinogenic hazard.

Surface water analyte concentrations from the first and second years of quarterly monitoring did not exceed any of the screening criteria set forth in the BHRA and the HHRA I.

TABLE 2-1 SOLDIER CREEK OUTFALLS AND ASSOCIATED BUILDINGS/STRUCTURES


Location	Outfall	Building	
			Aircraft overhaul and modification
West Soldier Creek	A	3001	facility
	В		Drains roadway
			Aircraft overhaul and modification
	С	3001	facility
			Aircraft overhaul and modification
;	D	3001	facility
			Aircraft overhaul and modification
	Е	3001	facility
		3108	Hydraulic test and calibration
	N		Drains Outfalls A, B, C, D, E
			Aircraft overhaul and modification
East Soldier Creek	F	3001	facility
			Aircraft overhaul and modification
	G	3001	facility
	Н	2122	Airframe paint stripping
		2210	Accessories
			Aircraft overhaul and modification
		3001	facility
		3102	Hangar and Fire Station
			Hangar and process vacuum heat treat
		3105	area
		3220	Missles and Avionics
		3221	Blade repair
		3234	Jet engine test stands
		3703	Jet engine test stands
	I	2122	Airframe paint stripping
		2210	Accessories
			Aircraft overhaul and modification
		3001	facility
		3102	Hangar and Fire Station
			Hangar and process vacuum heat treat
		3105	area
		3220	Missles and Avionics
		3221	Blade repair
		3234	Jet engine test stands
		3703	Jet engine test stands
	J		Drains roadway and DRMO area
			Aircraft overhaul and modification
	L	3001	facility
	М		Drains roadway


Adapted from NUS (1989)


TABLE 2-2 SUMMARY OF PREVIOUS INVESTIGATIONS AND ACTIVITIES

INVESTIGATION/REPORT	ORGANIZATION	DATE
Quarterly Groundwater Sampling	Tulsa COE	December 1987 - March 1989, March and October 1988
Surface Water Sampling	Tinker AFB	March - September 1987
Sediment and Surface Water Sampling	Oklahoma State Department of Health	June 1987
NPDES Surface Water Sampling	Tinker AFB	September 1986 - July 1987
Sediment and Surface Water Sampling	EPA	October 1984, November 1984
Sediment Sampling and Dredging	Harry Keith & Sons, Inc.	October 1985, April and May 1986
Final Storm Sewer Investigation for Soldier Creek	NUS Corporation	October 1989
Industrial Wastewater Treatment Plant Remedial Investigation	Tulsa COE	March 1988 - September 1990
Soldier Creek Remedial Investigation. Phase I and II	B&V Waste Science and Technology Corporation	July 1990. June 1991
Soldier Creek Baseline Risk Assessment	B&V Waste Science and Technology Corporation	February 1993
Soldier Creek Record of Decision	B&V Waste Science and Technology Corporation	August 1993
Workplans for Long-Term Monitoring and Ecological Assessment of Soldier Creek	Woodward-Clyde Federal Services	June 1994
Draft Ecological Assessment	Woodward-Clyde Federal Services	January 1996
Long-Term Monitoring of Sediment and Surface Water	Woodward-Clyde Federal Services	November 1994, January, April, July, and October 1995, March, May, and August 1996, January and July 1997
Soldier Creek/Off-Base Groundwater Operable Unit, Remedial Investigation	Parsons Engineering Science	July 1995

source: B&V 1993, and PES 1995

Dosigned By:
D.D.N.
Down By:
D.R. T.
Checked By:
L.S. Y. SCALE 1000 TITLE: PROJECT NUMBER SOLDIER CREEK QUARTERLY MONITORING SAMPLING SEGMENTS 0 F93506 OKLAHOMA CITY, OKLAHOMA TINKER AIR FORCE BASE 1000 DATE 01/12/95 FEET 2000 FIG. NO. 2-2

SAMPLING LOCATION ON TRIBUTARY B

8

BOUNDARY OF TINKER AIR FORCE BASE

UNDERGROUND PORTION OF CREEK

SOLDIER CREEK AND TRIBUTARIES

EGEND:

3.1 SAMPLING LOCATIONS AND LABELING

During the third year of the long-term monitoring program, sampling frequency was reduced from quarterly to semi-annual sampling and analysis of sediment and surface water within the segments identified in Figure 2-2. On-base sampling segments included four segments along West Soldier Creek (QW01-QW04), and nine segments along East Soldier Creek (QE01-QE09), and a sample location on a tributary or drainage ditch to West Soldier Creek (QW07). The additional sampling location (QW07) was added to a tributary or drainage ditch to West Soldier Creek during the second quarter of the second year sampling event. The sample location, QW07, is located at the culvert on the northeast corner of the Building 3001 north parking lot, north of Industrial Boulevard.

The off-base portion of Soldier Creek bounded by I-40 has been split into four segments, two on West Soldier Creek (QW05, QW06), two on East Soldier Creek (QE10, QE11) and a sample location on Tributary B (TR01), just above the confluence with East Soldier Creek, east of Douglas Boulevard. Stream segments were established based on the locations of known outfalls and structures (i.e., spill containment structures), known or suspected areas of contamination, stream morphology, and in conjunction with Tinker AFB EM personnel familiar with the project (WCFS, 1994). Table 3-1 presents the boundaries for each stream segment.

Sampling occurred quarterly for the first two years of long-term monitoring. Each stream segment was divided into quarters (sections). During each quarterly event, a different section of the stream segment was sampled progressing from upstream the first quarter to downstream with each subsequent event (Figure 3-1). The rationale for sub-dividing the stream segments into sections was to better characterize Soldier Creek surface water and sediment quality temporally and spatially. This sampling methodology was set forth in the ROD (B&V, 1993b).

Locations for semi-annual sampling were based on results from the first two years of quarterly monitoring for each segment of stream. Using sediment concentrations of PAHs as a guide (since they consistently exceed BHRA 10⁻⁶ screening criteria), the two most

contaminated sample locations from each stream segment were selected for sampling during semi-annual monitoring. In the event that PAHs did not exceed the health criteria, best professional judgment was used to determine which locations to sample based on other contaminant concentrations (i.e., PCB concentrations in the second and third quarter segments of QE03). If a segment was "equally" contaminated or there were no significant differences in contamination, the first and third quarter sections of a segment were selected for sampling. During the 1Evnt3Yr monitoring event, the upstream most section of each segment was sampled, and during the 2Evnt3Yr monitoring event, the downstream most section of each segment was sampled.

Data presented in the First Event Third Year Sampling Report (WCFS, 1997d) indicated QE11 would be sampled at the third quarter location during the 2Evnt3Yr monitoring event, however, the location could not be positively identified in the field. Therefore, QE11 was sampled at the fourth quarter sampling location, at the I-40 bridge, during the 2Evnt3Yr monitoring event. Two additional exceptions to the above described sample location rationale were at Tributary B and QW07, where the same location was sampled during all sampling events. Due to the grade of QW07, sufficient water for sampling was available only near the outlet of the outfall. Table 3-2 presents the quarterly monitoring locations as they correlate to the third year(semi-annual) monitoring locations. Figure 3-2 illustrates the sample locations within each sampling segment for semi-annual monitoring.

Samples were collected from a representative location along the stream channel. Sample locations within the section of the stream segment being sampled were determined in the field. Basic criteria for determining a representative sample location included flow, depth, deposition, occurrence of discolored sediments, and change in stream morphology.

3.1.1 Sediment Sampling

Depending on the water column depth and sediment characteristics, a trowel, ponar dredge, or hand auger/multi-stage sampler was used to collect sediment samples. Stainless steel trowels were used to collect samples from the 0-6 inch interval. In areas where the water column was too deep to use a trowel, a stainless steel hand auger/multi-stage sampler was used. Sediment samples obtained from 6-12 inches and 3-5 feet were also collected using a stainless steel hand auger.

For discrete sample collection using the trowel, the sampling area was first cleared of vegetation and/or debris. The sample was collected from the upper 6 inches. Upon reaching the surface, the sample was placed in a stainless steel bowl or on a clean sheet of aluminum foil. The sample for volatile and semi-volatile analyses was placed immediately into sample containers. Free water obtained during sample collection was used to eliminate headspace in the volatile and semi-volatile sample containers. The remaining portion of the sediment sample was composited and then transferred to the appropriate containers based upon analysis to be performed. Any remaining free water from the sample collection was returned to the stream. To the extent practical, the sample hole was backfilled with native sediment and vegetation.

For deeper samples, the hand auger sampler was lowered to the sediment surface and manually augured to the desired sampling depth or to refusal of the device. Upon reaching the surface, the sample was placed on a clean sheet of aluminum foil. The sample for volatile and semi-volatile analyses was placed immediately into sample containers. Free water obtained during sample collection was used to eliminate headspace in the volatile and semi-volatile sample containers. The remaining portion of the sample was composited and then transferred to the appropriate containers based upon analysis to be performed. Any remaining free water from the sample collection was returned to the stream. To the extent practical, the sample hole was backfilled with native sediment and vegetation.

3.1.2 Surface Water Sampling

Surface water samples were collected prior to sediment sampling and were obtained from the same location as sediment samples. Care was taken not to disturb the sediments during sampling. When possible, high velocity areas were avoided due to increased volatilization in turbulent waters. Stagnant waters were unavoidable in many segments due to the intermittent nature of the streams. Grab surface water samples were collected by submerging glass or stainless steel sampling devices directly into the creek. The opening of the container faced upstream. The water was then transferred directly into the sample containers and submitted for laboratory analysis.

Field parameters were conducted on surface water samples. These parameters included pH, specific conductance, temperature, and dissolved oxygen. Field measurements were recorded on field sheets. A total of four replicates were measured and averaged for each parameter.

Volumetric stream flow in each segment was estimated by determining the cross-sectional area and measuring current velocities across a representative transect in accordance with USGS flow-measurement techniques (wading method) (USGS, 1984).

3.1.3 Sample Identification

Each sample was identified by a specific field identification number which indicates site name, sampling location, sample type, and sequence number. At example of the sample identification number *SC-QE01-SD-1001* is as follows:

- SC indicates the site name (Soldier Creek Sediment and Surface Water Operable Unit)
- QE01..QE11 indicates sample segment on East Soldier Creek
- QW01..QW07 indicates sample segment on West Soldier Creek
- TR01 indicates the sample location on Tributary B
- SW indicates surface water
- SD indicates sediment

The last three or four digit code is the sequence identifier. For the first nine monitoring events, the first digit of the sequence identifier indicates the event being sampled and the sample location within a stream segment (i.e., 1XX through 9XX for sampling events 1 through 9). Subsequent events are indicated by the first two digits of the sequence identifier (i.e., 10XX for the 2Evnt3Yr monitoring event). The last two digits indicate, in sequence, the samples taken from each location. The last two digits always begin with 01 at each location. Duplicate samples for each sampling event were identified by adding 500 to the sequence identifier of the corresponding sample (i.e., SC-QE01-SD-1001 duplicate would be identified as SC-QE01-SD-1501).

In the above example, 1001 indicates the first sample (i.e., 0-6 inches) taken during the 2Evnt3Yr monitoring event, and 1002 indicates the second sample (i.e., 6-12 inches), taken during the 2Evnt3Yr monitoring event.

3.2 ANALYTICAL PARAMETERS

Sediment and surface water samples were analyzed for volatile organics, semi-volatile organics metals, polychlorinated Liphenyl's and pesticides. Sediment for 0-6 inches bgs and surface water samples were also analyzed for hexavalent chromium. In addition, surface water samples were analyzed for the following wet chemistry parameters: alkalinity, chemical oxygen demand, hardness, total dissolved solids, total organic carbon, total suspended solids, chloride, and sulfate. Table 3-3 presents a list of analytes by method and reporting limits. Actual sediment reporting limits were raised due to percent moisture in the sediment and elevated analyte concentrations.

A summary of the constituents for analysis, containers, preservation, and holding times are presented in Table 3-4. Due to the short holding time, samples collected for hexavalent chromium analysis were analyzed locally by Southwell Analytical Laboratory, located in Oklahoma City, Oklahoma. The remaining analysis was performed by Quanterra Environmental Services of Arvada, Colorado.

3.3 DECONTAMINATION PROCEDURES

All sampling equipment was decontaminated prior to each sampling location and prior to initial use. Decontamination of equipment minimized the risk of cross-contamination to environmental samples from improperly cleaned sampling equipment and ensured that representative samples were obtained. Potable water for all decontamination activities was provided by Tinker AFB.

Equipment used in the cleaning or decontamination of field equipment included:

- Methanol, reagent grade
- Aluminum foil
- Disposable gloves
- Teflon and stainless steel squeeze bottles or sprayers

- Wash tubs of various sizes and scrub brushes
- Potable water
- High Performance Liquid Chromatography (HPLC) water
- Plastic sheeting
- Washwater containment tubs or containers

Equipment decontamination procedures that were employed in the Soldier Creek investigation are as follows:

- Only Teflon and stainless steel containers were used to dispense water, methanol, or other cleaning agents. No plastic containers were used.
- All personnel performing decontamination procedures were appropriate protective clothing such as disposable gloves, rubber boots, etc., as specified by the Site Safety Officer.
- All decontamination waste fluids were collected in containers with secondary containment and were stored at the drum staging area until disposal.
- All surface water and sediment sampling equipment (e.g. stainless steel bowls, trowels, dredges, and samplers) was decontaminated using brushes and a laboratory-grade detergent/potable water solution, followed by a potable water rinse, a pesticide-grade methanol rinse, and a HPLC water rinse. All equipment was allowed to air dry before sampling. If not immediately used, all decontaminated sampling equipment was wrapped in aluminum foil before storage or reuse.

All cleaning or wash buckets or tubs were cleaned using laboratory grade detergent/potable water solution and potable water rinse upon mobilization and demobilization.

3.4 QUALITY CONTROL/QUALITY ASSURANCE

Quality Assurance (QA) procedures were performed in general accordance with the Quality Assurance Project Plan (QAPP) of the Workplans (WCFS, 1994). No deviations from the QAPP occurred in the field during the long-term monitoring events, with the exception of the

rate of QA sample collection. QA was collected at a rate of approximately 10 percent (i.e., 1 for every 10 samples) during the first two years of monitoring. Beginning the third year of long-term monitoring, field duplicates, matrix spikes, and matrix spike duplicates were collected at a rate of approximately 5 percent (i.e., 1 for every 20 samples).

One rinsate was collected for each day of sampling. These Quality Assurance/Quality Control (QA/QC) samples were collected to assess field sampling procedures (including decontamination) and field collection precision. Trip blank samples accompanied each cooler with samples for VOC analysis to assess potential cross-contamination. One field ambient blank for each monitoring event was collected by pouring HPLC water, used for decontamination of equipment and rinsate samples, directly into sample bottles. The ambient blank sample was collected to assess the effects of background conditions, potential sample container contamination, and the quality of the HPLC water.

A QA/QC review was performed by Quanterra and Southwell laboratories. A QA/QC data assessment was performed by WCFS which included full validation of at least twenty percent of the data, for each monitoring event, using the SW-846 methods (EPA, 1992) and the EPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic and Inorganic Data Review (Guidelines) (USEPA, 1994a, 1994b). Data assessment is herein defined as the systematic, structured process of evaluating, editing, screening, checking, verifying, and reviewing to assure that analytical data are in compliance with established criteria and are valid for the intended use.

The full validation consisted of a review of SW-846 results summary sheets and instrument reports for QA/QC parameters such as matrix spikes (MS), matrix spike duplicates (MSDs), detection limits, calibrations, duplicate control samples (DCS), single control samples (SCS), chain of custody forms, sample preparations, holding times, etc. In addition the review, consisted of recalculating laboratory data and standard calibration curves, checking for transcription errors, and carefully checking chromatograms and reconstructed ion chromatograms. The purpose of the full validation is to evaluate whether laboratory performance and analytical data are in compliance with method requirements and project specifications for accuracy, precision, validity, and completeness.

The data assessment process provides information on analytical limitations of data based on regulatory or method specific QA/QC criteria. In addition, the review process assigns data

qualifiers and provides a statement concerning usability of data. To ensure the data gathered during the investigation activities are adequate; precision, accuracy, representativeness, completeness, and comparability (PARCC) parameter targets have been identified for Level III analyses during the development of Data Quality Objectives (DQOs) and planning of the field activities. Level III analyses included all laboratory analyses using EPA methods. Quality of the analytical data is indicated by the calculation of values for precision, accuracy, and completeness. The quantitative target values for precision, accuracy, and completeness are as follows:

• Precision = 20 percent

• Accuracy = control limits specified for the particular analysis

• Completeness = 90 percent

Comparability and representativeness are assessed in a qualitative evaluation of the data generated during the field investigation.

The data generated during the third year of monitoring at Soldier Creek, Tinker AFB were reviewed as described above. The data were evaluated to be usable as received from Quanterra, and Southwell labs with the qualifications noted in the validation reports for their stated and intended purpose. Complete results of data validation and signed Chain of Custody Forms are presented in the monitoring reports (WCFS, 1997d, and e).

TABLE 3-1 LONG-TERM MONITORING STREAM SEGMENT BOUNDARIES

WEST SOLDIER CREEK ON-BASE PORTION		
Section 1 (QW01)	South Tank Area to Outfall E	
Section 2 (QW02)	Outfall E to just above Outfall D	
Section 3 (QW03)	Outfall D to just above Outfall C	
Section 4 (QW04)	Outfall C to culvert opposite north end of Building 3001, where on-base above ground portion of West Soldier Creek ends.	
Section 5 (QW07)	Single location located on tributary to West Soldier Creek at emergence from north-east corner of parking lot, north of Building 3001	

WEST SOLDIER CREEK OFF-BASE PORTION		
Section 1 (QW05)	Above-ground reach from it's emergence at three culverts near Tinker Gate 7	
	to the spill containment structure	
Section 2 (QW06)	Spill containment structure to Interstate 40	

EAST SOLDIER CREEK ON-BASE PORTION		
Section 1 (QE01)	Mainstem from its emergence at 44th Street to just above the confluence of	
	Outfall G	
Section 2 (QE02)	Outfall G from its emergence east, half way to its confluence with the	
	mainstem	
Section 3 (QE03)		
	Outfall G from halfway to its confluence with the mainstem to the mainstem.	
Section 4 (QE04)	Mainstem from Outfall G to just above the confluence of Outfall M	
Section 5 (QE05)	Outfall M to Bradley Drive	
Section 6 (QE06)	The long pool from Bradley Drive north to just above Outfall F	
Section 7 (QE07)	Outfall F from its emergence to its confluence with the mainstem	
Section 8 (QE08)	The mainstem from Outfall F to the dam on the mainstem	
Section 9 (QE09)	The mainstem from the dam to the spill containment structure on Douglas	
	Blvd.	

	EAST SOLDIER CREEK OFF-BASE PORTION
Section 1 (QE10)	The mainstem from Douglas Boulevard to just above the confluence with Tributary B
Section 2 (QE11)	The mainstem from Tributary B to Interstate 40

TABLE 3-2 SEMI-ANNUAL MONITORING SAMPLE LOCATIONS

Sample Segment	1Evnt3Yr	2Evnt3Yr
_	(January 1997)	(July 1997)
QE01	1st Quarter Location	4th Quarter Location
QE02	3rd Quarter Location	4th Quarter Location
QE03	1st Quarter Location	2nd Quarter Location
QE04	1st Quarter Location	3rd Quarter Location
QE05	1st Quarter Location	2nd Quarter Location
QE06	3rd Quarter Location	4th Quarter Location
QE07	1st Quarter Location	3rd Quarter Location
QE08	2nd Quarter Location	3rd Quarter Location
QE09	1st Quarter Location	3rd Quarter Location
QE10	1st Quarter Location	3rd Quarter Location
QE11	1st Quarter Location	4th Quarter Location*
TR01	1st Quarter Location	1st Quarter Location
QW01	1st Quarter Location	3rd Quarter Location
QW02	1st Quarter Location	3rd Quarter Location
QW03	1st Quarter Location	2nd Quarter Location
QW04	3rd Quarter Location	4th Quarter Location
QW05	1st Quarter Location	3rd Quarter Location
QW06	1st Quarter Location	3rd Quarter Location
QW07	1st Quarter Location	1st Quarter Location

Note: * The second event location for QE11 was originally identified as the third quarter sampling location. The location could not be positively identified in the field and was sampled at the fourth quarter location, at the I-40 bridge.

TABLE 3-3
ANALYTES AND REPORTING LIMITS

Analytes	Sediment ¹	Water
Recoverable Metals - Method 6010/6020		
Aluminum	10*	15
Antimony	6*	3
Barium	1 *	1
Beryllium	0.2*	0.5
Cadmium	0.5*	0.3
Calcium	20*	200*
Chromium	1*	5
Cobalt	1*	0.5
Copper	2*	2
ron	10*	100*
Lead	5*	l
Magnesium	20*	200*
Manganese	1*	0.2
Molybdenum	2*	1
Nickel	4*	0.2
Potassium	500*	5000*
Silver	1*	0.5
Sodium	500*	5000*
Thallium	200*	0.1
Vanadium	1*	0.5
Zinc	-	10
Selenium	0.5	5
Metals - Methods As(7060), Hg(7470/7471), Hexavalent Chromium (7196A) Arsenic Mercury	mg/kg 0.5 .033	mg/L 0.005 0.0002
Selenium	0.5	-
Hexavalent Chromium ²	2.5	0.1
PCB's and Chlorinated Pesticides - Method		
8080	mg/kg	ug/L
4,4'-DDD	3.3	0.01
4,4'-DDE	3.3	0.01
4,4'-DDT	3.3	0.01
Aldrin	1.7	0.005
alpha-BHC	1.7	0.005
alpha-Chlordane	1.7	0.005
Aroclor 1016	33	0.1
Aroclor 1221	33	0.1
Aroclor 1232	33	0.1
Aroclor 1242	33	0.1
		0.1

TABLE 3-3
ANALYTES AND REPORTING LIMITS

Analytes	Sediment ¹	Water
Aroclor 1254	33	0.1
Aroclor 1260	33	0.1
beta-BHC	1.7	0.005
delta-BHC	1.7	0.005
Dieldrin	3.3	0.01
Endosulfan I	1.7	0.005
Endosulfan II	3.3	0.01
Endosulfan sulfate	3.3	0.01
Endrin	3.3	0.01
gamma-BHC (Lindane)	1.7	0.005
gamma-Chlordane	1.7	0.005
Heptachlor	1.7	0.005
Heptachlor epoxide	1.7	0.005
Methoxychlor	17	0.05
Toxaphene	170	0.25
Volatile Organics - Method 8240/8260	mg/kg	ug/L
Acetone	10	10
Acrolein	100	100
Acrylonitrile	100	100
Benzene	5	5
Bromodichloromethane	5	5
Bromoform	5	5
Bromomethane	10	10
2-Butanone (MEK)	10	10
Carbon disulfide	5	5
Carbon tetrachloride	5	5
Chlorobenzene	5	5
Chloroethane	10	10
Chloroform	5	5
Chloromethane	10	10
Dibromochloromethane	5	5
Dibromomethane	5	5
trans-1,4-Dichloro-2-butene	5	5
Dichlorodifluoromethane	20	20
1,1-Dichloroethane	5	5
1,2-Dichloroethane	5	5
1,1-Dichloroethene	5	5
1,2-Dichloropropane	5	5
cis-1,3-Dichloropropene	5	5
trans-1,3-Dichloropropene	5	5
Ethylbenzene	5	5
Ethyl methacrylate	20	20
Iodomethane	5	5
2-Hexanone	10	10

TABLE 3-3 ANALYTES AND REPORTING LIMITS

Analytes	Sediment ¹	Water
	Sediment 5	5
Methylene chloride 4-Methyl-2-pentanone (MIBK)	10	10
	5	5
Styrene 1,1,1,2-Tetrachloroethane	5	5
1,1,2,2-Tetrachloroethane	5	5
Tetrachloroethene	5	5
Toluene	5	5
1,1,1-Trichloroethane	5	5
1.1.2-Trichloroethane	5	5
Trichlorethene	5	5
Trichlorofluoromethane	5	5
1,2,3-Trichloropropane	5	5
Vinyl acetate	10	10
Vinyl chloride	10	10
Xylenes (total)	5	5
trans 1,2-Dichloroethene	5	5
Ethanol		
2-Chlorethyl vinyl ether	10	10
2-Chlorentyr vinyr chici	10	
Semivolatile Organics - Method 8270	mg/kg	ug/L
Acenaphthene	330	10
Acenaphthylene	330	10
Acetophenone	330	10
4-Aminobiphenyl	330	10
Aniline	330	10
Anthracene	330	10
Benzo(a)anthracene	330	10
Benzo(b)fluoranthene	330	10
Benzo(k)fluoranthene	330	10
Benzo(g,h,i)perylene	330	10
Benzo(a)pyrene	330	10
Benzyl alcohol	330	10
4-Bromophenyl phenyl ether	330	10
Butyl benzyl phthalate	330	10
4-Chloroaniline	330	10
bis(2-Chloroethoxy)methane	330	10
bis(2-Chloroethyl)ether	330	10
bis(2-Chloroisopropyl)ether/2,2'-oxybis (1		
chloropropane)	330	10
4-Chloro-3-methylphenol	330	10
2-Chloronaphthalene	330	10
2-Chlorophenol	330	10
4-Chlorophenyl phenyl ether	330	10
Chrysene	330	10
Dibenz(a,h,)anthracene	330	10

TABLE 3-3
ANALYTES AND REPORTING LIMITS

Analytes	Sediment ¹	Water
Dibenzofuran	330	10
Di-n-butyl phthalate	330	10
1,2-Dichlorobenzene	330	10
1,3-Dichlorobenzene	330	10
1.4-Dichlorobenzene	330	10
3,3'-Dichlorobenzidine	660	20
2,4-Dichlorophenol	330	10
2.6-Dichlorophenol	330	10
Diethyl phthalate	330	10
p-Dimethylaminoazobenzene	330	10
7,12-Dimethylbenz(a)-anthracene	330	10
a,a-Dimethylphenethyl-amine	330	10
2,4-Dimethylphenol	330	10
Dimethyl phthalate	330	10
4,6-Dinitro-2-methylphenol	1600	50
2,4-Dinitrophenol	1600	50
2,4-Dinitrotoluene	330	10
2,6-Dinitrotoluene	330	10
Di-n-octyl phthalate	330	10
Diphenylamine	330	10
bis(2-Ethylhexyl)phthalate	330	10
Ethyl methanesulfonate	330	10
Fluoranthene	330	10
Fluorene	330	10
Hexachlorobenzene	330	10
Hexachlorobutadiene	330	10
Hexachlorocyclopentadiene	330	10
Hexachloroethane	330	10
Indeno(1,2,3-cd)pyrene	330	10
Isophorone	330	10
3-Methylcholanthrene	330	10
Methyl methanesulfonate	330	10
2-Methylnaphthalene	330	10
2-Methylphenol	330	10
3/4-Methylphenol	330	10
Naphthalene	330	10
1-Naphthylamine	330	10
2-Naphthylamine	330	10
3-Nitroaniline	1600	50
4-Nitroaniline	1600	50
Nitrobenzene	330	10
2-Nitrophenol	330	10
4-Nitrophenol	1600	10
N-Nitroso-di-n-butylamine	330	10
N-Nitrosodiphenylamine	330	10

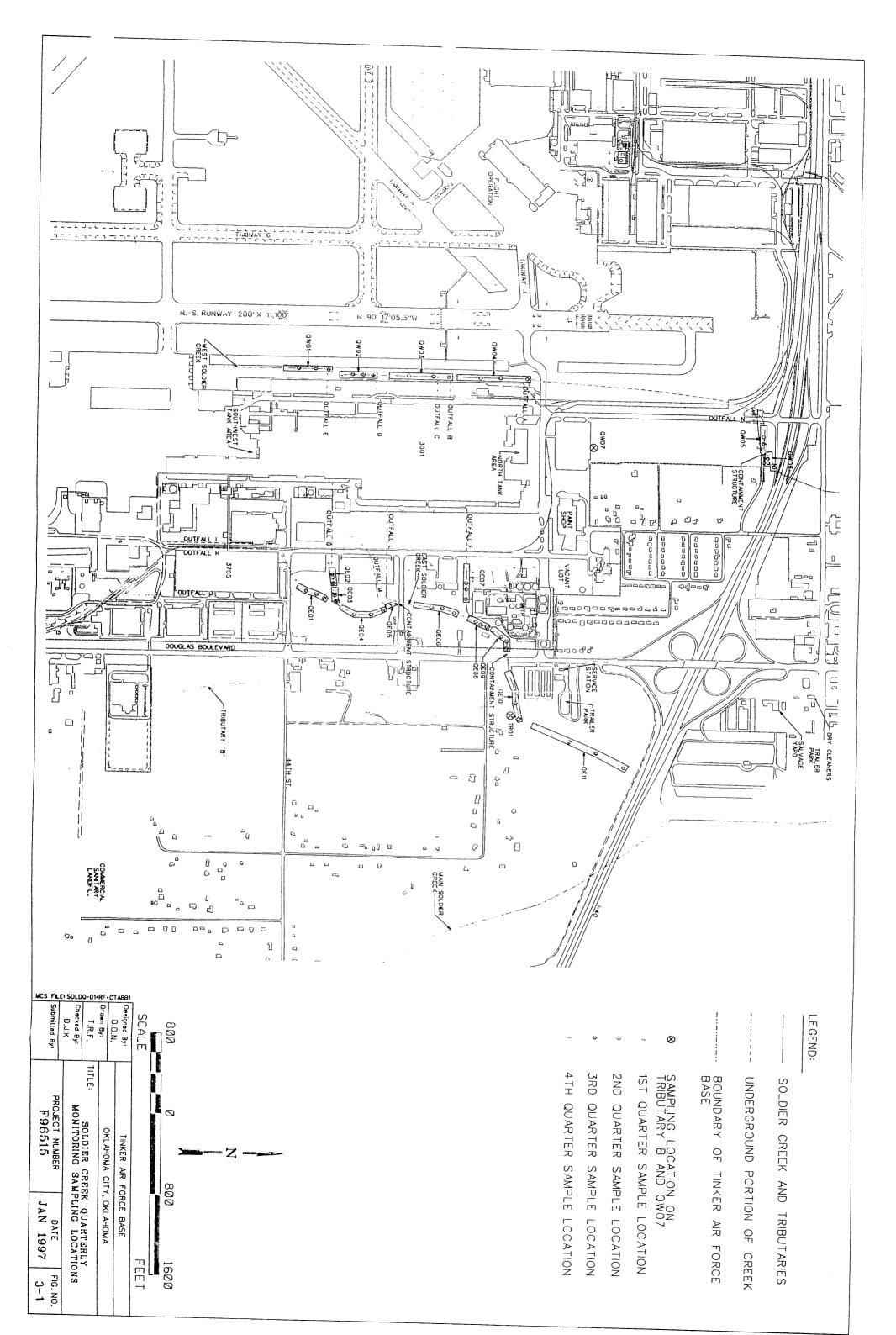
TABLE 3-3
ANALYTES AND REPORTING LIMITS

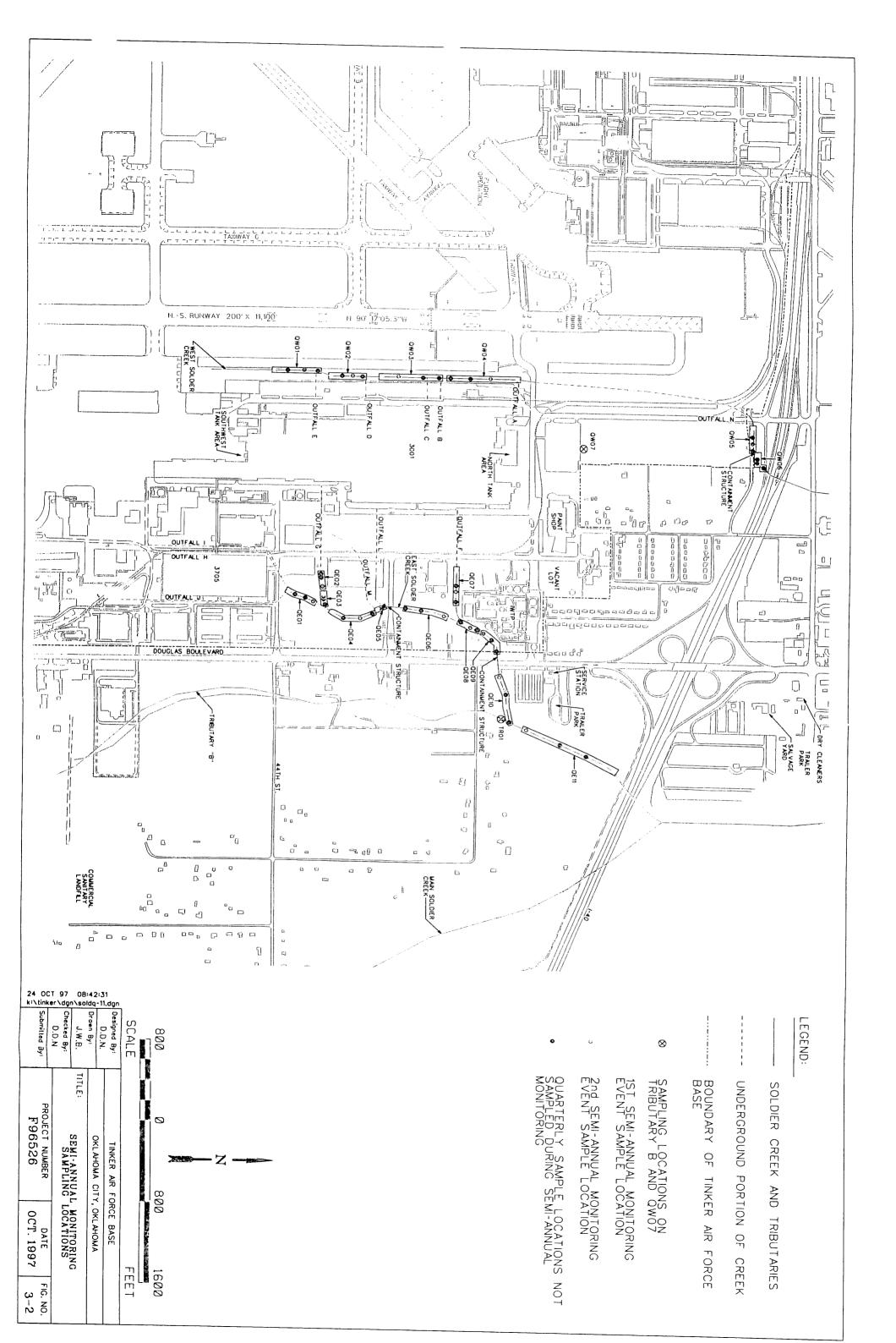
N-Nitrosopiperidine 330 10 Pentachlorobenzene 1600 10 Pentachlorophenol 1600 10 Phenacetin 330 10 Phenanthrene 330 10 Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1,2,4,5-Tetrachloro-benzene 330 10 2,3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorobenzene 330 10 2,4,5-Trichlorophenol 1600 50 2,4,5-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5	Analytes	Sediment ¹	Water
Pentachlorobenzene 330 10 Pentachloronitrobenzene 1600 10 Pentachlorophenol 1600 10 Phenacetin 330 10 Phenal 330 10 Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1,2,4,5-Tetrachloro-benzene 330 10 2,3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorobenzene 330 10 2,4,5-Trichlorophenol 1600 50 2,4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/kg Hardness NA 5 <t< td=""><td>N-Nitroso-di-n-propylamine</td><td>330</td><td>10</td></t<>	N-Nitroso-di-n-propylamine	330	10
Pentachloronitrobenzene 1600 10 Pentachlorophenol 1600 10 Phenacetin 330 10 Phenanthrene 330 10 Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1,2,4,5-Tetrachloro-benzene 330 10 2,3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorophenol 1600 50 2,4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine	N-Nitrosopiperidine	330	10
Pentachlorophenol 1600 10 Phenacetin 330 10 Phenanthrene 330 10 Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1.2.4.5-Tetrachloro-benzene 330 10 2.3.4.6-Tetrachlorophenol 1600 50 1.2.4-Trichlorobenzene 330 10 2.4.5-Trichlorophenol 1600 50 2.4.6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 1.0 TSS NA 2 TDS NA 10 ALK	Pentachlorobenzene	330	10
Phenacetin 330 10 Phenanthrene 330 10 Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1,2,4,5-Tetrachloro-benzene 330 10 2,3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorobenzene 330 10 2,4,5-Trichlorophenol 1600 50 2,4,5-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 1.0 TSS NA 2 TDS NA 1.0 TSS NA 2 TDS NA 10 ALK NA 0.5	Pentachloronitrobenzene	1600	10
Phenanthrene 330 10 Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1,2,4,5-Tetrachloro-benzene 330 10 2,3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorobenzene 330 10 2,4,5-Trichlorophenol 1600 50 2,4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 1.0 TSS NA 2 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Pentachlorophenol		10
Phenol 330 10 2-Picoline 330 10 Pronamide 330 10 Pronamide 330 10 1.2.4.5-Tetrachloro-benzene 330 10 2.3.4.6-Tetrachlorophenol 1600 50 1.2.4-Trichlorobenzene 330 10 2.4.5-Trichlorophenol 1600 50 2.4.6-Trichlorophenol 250 50 1-Chloronaphthalene 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 1.0 TSS NA 20 TOC NA 1.0 TSS NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Phenacetin	330	10
2-Picoline 2-Picoline 330 10 Pronamide 330 10 Pyrene 330 10 1.2.4.5-Tetrachloro-benzene 330 10 2.3,4,6-Tetrachlorophenol 1600 50 1.2.4-Trichlorophenol 1600 50 2.4,5-Trichlorophenol 330 10 2.4,5-Trichlorophenol 330 10 2.4,5-Trichlorophenol 2.4,5-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 20 TOS NA 10 ALK NA 5 Chloride	Phenanthrene	330	10
Pronamide 330 10 Pyrene 330 10 1.2.4.5-Tetrachloro-benzene 330 10 2.3.4.6-Tetrachlorophenol 1600 50 1.2.4-Trichlorobenzene 330 10 2.4.5-Trichlorophenol 1600 50 2.4.6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine	Phenol	330	10
Pyrene 330 10 1,2,4,5-Tetrachloro-benzene 330 10 2,3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorobenzene 330 10 2,4,5-Trichlorophenol 1600 50 2,4,5-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	2-Picoline	330	10
1.2.4,5-Tetrachloro-benzene 330 10 2.3,4,6-Tetrachlorophenol 1600 50 1.2,4-Trichlorobenzene 330 10 2.4,5-Trichlorophenol 1600 50 2.4,5-Trichlorophenol 1600 50 2.4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Pronamide	330	61
2.3,4,6-Tetrachlorophenol 1600 50 1,2,4-Trichlorobenzene 330 10 2,4,5-Trichlorophenol 1600 50 2,4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 1.0 TSS NA 1.0 TSS NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Pyrene	330	10
1.2.4-Trichlorobenzene 330 10 2.4,5-Trichlorophenol 1600 50 2.4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	1,2,4,5-Tetrachloro-benzene	330	10
2.4,5-Trichlorophenol 1600 50 2.4,6-Trichlorophenol 330 10 Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 1.0 TSS NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	2,3,4,6-Tetrachlorophenol	1600	50
2.4.6-Trichlorophenol 330 10	1,2,4-Trichlorobenzene	330	10
Benzidine 2500 50 1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	2,4,5-Trichlorophenol	1600	50
1-Chloronaphthalene 2500 50 Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	2.4.6-Trichlorophenol	330	10
Dibenz(a,j)acridine Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Benzidine	2500	50
Azobenzene 2500 50 Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	1-Chloronaphthalene	2500	50
Benzoic acid 2500 50 Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Dibenz(a,j)acridine		
Wet Chemistry mg/kg mg/L Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Azobenzene	2500	50
Hardness NA 5 COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Benzoic acid	2500	50
COD NA 20 TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Wet Chemistry	mg/kg	mg/L
TOC NA 1.0 TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	Hardness	NA	5
TSS NA 2 TDS NA 10 ALK NA 5 Chloride NA 0.5	COD	NA	20
TDS NA 10 ALK NA 5 Chloride NA 0.5	TOC	NA	1.0
ALK NA 5 Chloride NA 0.5	TSS	NA	2
Chloride NA 0.5	TDS	NA	10
e.morrag	ALK	NA	5
Sulfate NA 0.5	Chloride	NA	0.5
	Sulfate	NA	0.5

NA - Not applicable

^{*} Indicates Method 6010, all other metals by Method 6020

¹ Actual sediment reporting limits vary due to percent moisture, and preparation dilution


² Reporting units for sediment & surface hexavalent chromium analysis for second and third quarters second year monitoring were 20 mg/kg and 0.5 mg/L, respectively.


TABLE 3-4
ANALYTES, CONTAINERS, PRESERVATION, AND HOLDING TIMES

MEDIA	METHOD	PARAMETER	CONTAINER	PRESERVATION	HOLDING TIME
Sediment	Sediment SW-486 8240/8260	Volatile Organics	Two 4 oz. wide-mouthed jars	ائن ر	14 days
Sediment	SW-846 8270	Semivolatile Organics	*16 oz. wide-mouthed jars	4° €	14 days to extraction 40 days to analysis
1	SW-846 8080	Pesticides (with PCB's)	*16 oz. wide-mouthed jars	4° ر	14 days to extraction 40 days to analysis
	SW-846				
Sediment	Sediment 6010/6020/7000	Metals	*16 oz. wide-mouthed jars	4° C	180 days Hg - 28 days
Sediment	7196	Hexavalent Chromium	4 oz. wide mouth jar	4° C	24 hours
Water	SW-846 8240	Volatile Organics	Three 40-ml. glass vial w/Teflon cap	4° CHCLpH<2	14 days
Water	SW-846 8270	Semivolatile Organics	Two 3202 glass (amber)	4° €	7 days to extraction 40 days to analysis
Water	SW-846 8080	Pesticides (with PCB's)	Two 32oz glass (amber)	4° €	7 days to extraction 40 days to analysis
	SW-846				
Water	6010//6020/7060/7470	Total Metals, As, Hg	One 500-ml plastic bottle**	HNO ₃ pH<2	180 days Hg - 28 days
Water	6010/6020	Dissolved Metals	One 500-ml plastic bottle**	HNO ₃ pH<2	180 days Hg - 28 days
Water	130.2	Hardness	One 500-ml plastic bottle**	IINO, pH<2	180 days
		Chemical Oxygen Demand / Total			
Water	410.4, 415.1	Organic Carbon	One 16-oz glass	4° C H ₂ S0 ₄ pH<2	COD 24 days, TOC 28 days
		Total Suspended Solids, Total			
	160.1, 160.2, 310.1,	Dissolved Solids, Alkalinity,			TSS 7 days, TDS 7 days, Alkalinity 14 days,
Water	300.0	Chloride, Sulfate	Two 500-ml plastic bottles	4° C	Chloride 14 days, Sulfate 28 days
Water	7196	Hexavalent Chromium	One liter amber	4, C	24 hours

^{*}One 1602 glass container filled is sufficient for metals, semivolatile organics, and pesticides & PCB sediment analysis **One 500-ml bottle is sufficient for total metals, As, Hg, and hardness analysis

An evaluation of risks associated with Soldier Creek surface water and sediments was previously performed by Black & Veatch Waste Science Technology (B&V, 1993). Since the time of the original risk assessment, additional information on the nature and extent of stream contamination has been collected, including additional sediment and surface water sampling, as well as information on pesticides and PCBs not previously evaluated. The Human Health Risk Assessment I (HHRA I) was prepared for the first year of quarterly monitoring to provide information on potential current and future risks based on current surface water and sediment contaminant levels, to compare the results with those of B&V to see if the previous conclusions are still valid, and to develop cleanup goals that are protective of human populations. The HHRA I is presented in its entirety in the Final Quarterly Monitoring Annual Report (WCFS, 1997a). Based on results of the second year of quarterly monitoring the Human Health Risk Assessment II (HHRA II) was prepared to address the same issues as the HHRA I, and to compare current results with those of the HHRA I to see if the previous conclusions were still valid. The HHRA II is presented in its entirety in the Draft Second Year Quarterly Monitoring Annual Report (WCFS, 1997b). Similarly, the HHRA III was based on the results of the third year of monitoring, and is presented in its entirety in Appendix A.

The HHRA III was performed using guidance provided in the Risk Assessment Guidance for Superfund - Part A and Part B, Exposure Factors Handbook, Standard Default Exposure Factors, Dermal Exposure Assessment: Principles and Applications, and EPA Supplemental Region IV Risk Assessment Guidance. Environmental data obtained from surface water and sediment samples collected by Woodward-Clyde in the third year monitoring events (WCFS, 1997d and e) were used in the HHRA III. In addition, the HHRA III made use of recent EPA databases, including the Integrated Risk Information System (IRIS; Health Effects Assessment Summary Tables (HEAST) and EPA Region III Risk-Based Concentration Table. References used in the HHRA III are cited in Appendix A.

The HHRA III utilized the same stream segments and exposure scenarios as the HHRA I and HHRA II. Based on differences in contaminant sources and exposed populations, the following four stream segments were evaluated in this risk assessment:

- West Soldier Creek, on-base
- West Soldier Creek, off-base
- East Soldier Creek, on-base
- East Soldier Creek, off-base

The chemicals of potential concern identified include metals, PCBs, chlorinated pesticides, volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). An evaluation of potential health risks was performed for a group of exposure scenarios believed to represent potential forms of human activities that could occur at these areas. These exposure scenarios include the following:

- Construction workers involved in repair or installation of underground pipelines around or under on-base portions of the creeks
- Residents wading or swimming in the off-base portion of West and East Soldier Creeks. (Swimming was only evaluated for the child scenario for East Soldier Creek; all other scenarios assume wading only)

Potential health risks associated with surface water and sediment exposure were evaluated for both on-site construction workers and off-site residents. The results of the risk characterization indicate that potential cancer risks and non-carcinogenic health hazards for all scenarios are within or below the advisory range of 10^{-6} to 10^{-4} and 1.0, respectively. These results indicate that exposure to surface water and sediments in West and East Soldier Creeks is not likely to result in an unacceptable cancer risk or non-carcinogenic hazard for any on-base or off-base populations under current or future stream use conditions.

The following differences in approaches/assumptions were noted between the HHRAs and Baseline Health Risk Assessment (BHRA):

- The HHRAs evaluated PCBs/chlorinated pesticides as potential COCs. The BHRA prepared by B&V did not include these data
- The individual stream segments, evaluated in the B&V BHRA are not identical to the segments evaluated in the HHRAs (the stream segments evaluated in the HHRAs are thought to be more representative of actual stream use)
- Some of the exposure assumptions used in HHRAs are different than those used in B&V BHRA (e.g., the HHRAs utilized age-corrected surface area for

evaluating exposure to surface water and sediments; B&V BHRA values were not age corrected, which was not required at the time of the BHRA).

The results of the HHRA III were compared to those presented in the HHRA I and HHRA II. The results of the comparison between the three HHRAs showed no dramatic changes. Although the off-base East Soldier Creek cancer risks show a steady decline from HHRA I to HHRA III.

Despite slight differences in approach between the HHRAs and the BHRA, all risk assessments have concluded that there are no unacceptable cancer risks or non-carcinogenic hazards associated with exposure to East or West Soldier Creeks for any on-base or off-base populations, under current of future stream use conditions. Thus no remedial action appears to be warranted based on risks to human health.

As part of the risk assessment, a set of cleanup goals was developed to identify health-protective levels for each COC. Although remediation does not appear to be warranted at the present time (based on risk to human health), these cleanup goals provide a set of "action criteria", should remedial action be required in the future.

This section discusses data screening and evaluation procedures and the results of the third year of sediment and surface water long-term monitoring of the Soldier Creek Operable Unit.

5.1 DATA SCREENING

The purpose of data screening and analysis was to determine which analytes are present and which of those exceed media specific screening criteria. For this assessment, a simple two step procedure was used. The first step was to establish the presence or absence of analytes in the sediment and surface water samples. First, all analytes reported in detectable concentrations were tabulated on a segment by segment basis for each monitoring event.

The second step involved sample by sample comparisons to screening criteria. Screening criteria were set forth in the ROD (B&V, 1993b) and the HHRA I (WCFS, 1997a). These screening criteria are risk-based values to which specific analyte concentrations are compared. If sample concentrations were below the decision criteria, it was assumed that the analyte does not pose an unacceptable risk to human health and response actions are not required. Therefore, the analyte was dropped from further consideration. If screening criteria were exceeded, the analyte was considered a potential COC.

According to the ROD (B&V, 1993b), unacceptable exposures were determined based on the following criteria:

- Contaminant concentrations in sediment or surface water exceeding health levels based on an excess lifetime cancer risk of 10⁻⁴. Contaminant concentrations detected in the 10⁻⁴ to 10⁻⁶ range may potentially indicate an unacceptable exposure level and will be evaluated to determine if the exposure level was unacceptable and remediation, therefore, necessary.
- Contaminant concentrations in sediment or surface water with non-carcinogenic hazard indices (HIs) greater than 1.0

Contaminant concentrations in sediment or surface water that present an unacceptable ecological risk

The first two criteria were based on exposure factors developed by the BHRA for human health under the RI/FS, and the HHRA I. Summaries of carcinogenic and non-carcinogenic risks for contaminants of concern in sediment and surface water from the BHRA are presented in Table 5-1 and Table 5-2. Risk based cleanup levels developed by the HHRA I for sediment and surface water are presented in Tables 5-3 through 5-4. The following evaluation and discussion of analytical results is for the third year long-term monitoring results. These results were screened against the BHRA and HHRA I screening criteria as described above. The third year analytical results were also evaluated under the HHRA III for unacceptable cancer risk or non-carcinogenic hazard presented in Appendix A.

5.2 EVALUATION AND DISCUSSION OF RESULTS

5.2.1 Sediment

A total of 74 sediment samples (39 during 1Evnt3Yr and 35 during 2Evnt3Yr) were collected during the third year of long-term monitoring. Sediment samples were generally collected at three intervals from 0-6 inches, 6-12 inches, and 3-5 feet. Samples from TR01 were only collected from 0-6 inches, per the scope of work. When refusal of the sampling device occurred prior to 5 feet bgs, a sample was typically collected from the bottom one foot interval of the boring. The number of sediment samples collected varied each event based on the depth of sediment at each sampling location. In some sampling segments, particularly onbase East Soldier Creek, upstream of Bradley Drive, the stream bed is scoured to bedrock with few, shallow depositional areas.

Appendix B contains tables which summarize the analyte detections by monitoring event. Table 5-5 presents the frequency of detection, maximum, minimum and average concentrations of analytes detected in sediment. Statistical summaries were calculated based on detected concentrations in analytical samples excluding non-detects and QA/QC samples. The sample location at which the maximum concentration of an analyte was detected is presented in Table 5-6. Table 5-7 presents a summary of analytes for 0-6 inches and 6-12 inches bgs for the first three years of long-term monitoring which exceeded the BHRA screening criteria. Analytes which exceeded HHRA I 10⁻⁵ and 10⁻⁶ carcinogenic screening

criteria during the first three years of long-term monitoring are presented in Table 5-8 and Table 5-9. No analytes in sediment samples exceeded the HHRA I 10⁻⁴ carcinogenic screening criteria. One sample exceeded the HHRA I non-carcinogenic screening criteria for Aroclor 1254 as discussed below. Table 5-10 presents a comparison of the maximum analyte concentration for each event of the first three years of long-term monitoring to the maximum RI sampling analytical results.

5.2.1.1 Metals

Twenty-five metals were detected during the third year of monitoring. Metals detected by Methods 6010 were: aluminum, antimony, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc. Metals detected by Methods 7060, 7196, and 7471, were arsenic, hexavalent chromium, and mercury, respectively.

The most frequently detected metals and their maximum concentrations were aluminum (22,700 mg/kg), arsenic (15.7 mg/kg), barium (3,200 mg/kg), calcium (141,000 mg/kg), chromium (4,020 mg/kg), cobalt (166), copper (2,010 mg/kg), iron (24,400 mg/kg), lead (934 mg/kg), magnesium (27,100 mg/kg), manganese (7,430 mg/kg), nickel (6,470 mg/kg), potassium (3,520 mg/kg), vanadium (117 mg/kg), and zinc (2,310 mg/kg). These metals were detected in all 74 sediment samples collected during the third year of monitoring. Metals concentrations in sediment did not exceed BHRA or HHRA I screening criteria.

5.2.1.2 PCB's and Chlorinated Pesticides

4.4'-DDD, 4.4'-DDE, aldrin, alpha-chlordane, aroclor 1254, aroclor 1260, dieldrin, endosulfan II, gamma-chlordane, heptaclor, and heptaclor epoxide were detected in the sediments during the third year of monitoring. When pesticides or PCBs were detected in an analytical sample, a second column was run. Analytical results were qualified with "M" (primary result), "d" (see primary result), and no qualifier. Data qualified with "d" were not included in the statistical evaluation (Tables 5-5 and 5-6) and are not included in the review of analytical results.

Pesticides and PCBs were not identified as potential COC in the BHRA (B&V, 1993a). Consequently, screening criteria were not available from the BHRA for evaluation. HHRA I

10⁻⁶ screening criteria for PCBs and pesticides were not exceeded during the third year of monitoring.

The HHRA I non-carcinogenic screening criteria of 66.2 mg/kg was exceeded by one sample during the third year of monitoring. The highest concentration of aroclor 1254 was 82 mg/kg in sample QW03-902 collected from West Soldier Creek. The sample was collected during 1Evnt3Yr monitoring from 6-12 inches. The average reported concentrations of aroclor 1254 for the third year of monitoring was 7.2 mg/kg. Aroclor 1254 was also the most frequently detected PCB/pesticide compound with 22 detections in sediment samples.

5.2.1.3 <u>Semivolatile Organics</u>

Thirty-four semivolatile organic compounds (SVOCs) were detected during the third year of monitoring. The SVOCs detected during the third year of monitoring are presented in Table 5-5.

The highest semivolatile concentration was fluoranthene (32 mg/kg) which occurred in QE07-901 during the 1Evnt3Yr monitoring. Fluoranthene was detected in 59 analytical samples. The average concentration for fluoranthene during the third year of monitoring was 5.3 mg/kg.

Six semivolatile analytes were identified as potential contaminants of concern by exceeding risk-based screening criteria during the third year of monitoring. Benzidine was identified as a potential contaminant of concern during the first year of monitoring. However, benzidine concentrations did not exceed the screening criteria during the second or third years of monitoring. Indeno(1,2,3-cd)pyrene was identified as a potential contaminant of concern during the second year of monitoring by exceeding HHRA 10⁻⁶ screening criteria. However, indeno(1,2,3-cd)pyrene concentrations did not exceed screening criteria during the third year of monitoring.

The polyaromatic hydrocarbons (PAHs) benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and chrysene, exceeded the BHRA screening criteria during both third year monitoring events (Table 5-7). Benzo(a)pyrene exceeded the HHRA 10⁻⁵ screening in one sample from 1Evnt3Yr monitoring (Table 5-8). Benzo(a)pyrene,

benzo(b)fluoranthene, and dibenz(a,h)anthracene exceeded the HHRA I 10⁻⁶ screening criteria (Table 5-9).

Benzo(a)anthracene was detected in 48 analytical samples, 16 of which exceeded BHRA 10⁻⁶ screening criteria of 1.6 mg/kg. Benzo(a)anthracene concentrations did not exceed HHRA I screening criteria. The highest concentration of benzo(a)anthracene was 9.9 mg/kg detected in sample QW05-901, collected from an off-base segment of West Soldier Creek. The sample was collected during 1Evnt3Yr monitoring from 0-6 inches. The average detected concentration of benzo(a)anthracene during the third year of monitoring was 1.95 mg/kg.

Benzo(b)fluoranthene was detected in 51 analytical samples, 17 of which exceeded BHRA 10⁻⁶ screening criteria of 1.6 mg/kg and 2 of which exceeded HHRA I 10⁻⁶ screening criteria of 10.575 mg/kg. The highest concentration of benzo(b)fluoranthene was 13 mg/kg detected in sample QE07-901, collected from Outfall F. The sample was collected during 1Evnt3Yr monitoring from 0-6 inches. The average detected concentration of benzo(b)fluoranthene during the third year of monitoring was 2.29 mg/kg.

Benzo(k)fluoranthene was detected in 50 analytical samples, 16 of which exceeded BHRA 10⁻⁶ screening criteria of 1.6 mg/kg. Benzo(k)fluoranthene concentrations did not exceed HHRA I screening criteria. The highest concentration of benzo(k)fluoranthene was 12 mg/kg detected in sample QE08-1001, collected from the pond on East Soldier Creek. The sample was collected the during 2Evnt3Yr monitoring from 0-6 inches. The average detected concentration of benzo(k)fluoranthene during the third year of quarterly monitoring was 2.08 mg/kg.

Benzo(a)pyrene was detected in 48 analytical samples, 15 of which exceeded BHRA 10⁻⁶ screening criteria of 1.6 mg/kg, one of which exceeded HHRA I 10⁻⁵ screening criteria of 10.575 mg/kg, and 19 of which exceeded HHRA I 10⁻⁶ screening criteria of 1.057 mg/kg. The highest concentration of benzo(a)pyrene was 11 mg/kg detected in sample QE07-901, collected from Outfall F. The sample was collected during 1Evnt3Yr monitoring from 0-6 inches. The average detected concentration of benzo(a)pyrene during the third year of monitoring was 2.06 mg/kg.

<u>Chrysene</u> was detected in 52 analytical samples, 20 of which exceeded BHRA 10⁻⁶ screening criteria of 1.6 mg/kg. Chrysene concentrations did not exceed HHRA I screening criteria.

The highest concentration of chrysene was 12 mg/kg detected in samples QE07-901, QE08-1001, and QW05-901. The average detected concentrations of chrysene during the third year of monitoring was 2.45 mg/kg.

<u>Dibenz(a,h)anthracene</u> was detected in 25 analytical samples, 6 of which exceeded the HHRA I 10⁻⁶ screening criteria of 1.057 mg/kg. Dibenz(a,h)anthracene did not exceed BHRA screening criteria. The highest concentration of dibenz(a,h)anthracene was 1.9 mg/kg detected in sample QE07-901, collected from Outfall F. The sample was collected during 1Evnt3Yr monitoring from 0-6 inches. The average detected concentration of dibenz(a,h)anthracene during the third year of monitoring was 0.60 mg/kg.

Figure 5-1 illustrates the sample locations where exceedances of BHRA 10⁻⁶ screening criteria occurred in 0-6 inch sediment samples, during the third year of monitoring. Figures 5-2a through 5-2p present graphs of temporal PAH concentrations by stream segment for the first three years of monitoring. Graphs are presented for those segments in which exceedance of BHRA PAH screening criteria occurred, and for segments located at the downstream sampling boundaries. The graphs illustrate the sediment concentrations at 0-6 inches for the five PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene). The graphs illustrate that typically the detected PAH concentrations follow the same trend (e.g., an increase in one PAH compound is associated with increases in the other detected PAH compounds).

The graphs also illustrate that the sampling event with the highest concentration of the PAHs varies between the sampling segments. This relationship suggests that multiple origins for the PAHs could exist. For example, during the second year of monitoring many of the highest PAH concentrations occurred in segment QE03 (Outfall G). However, during the third year of monitoring many of the highest PAH concentrations occurred in segment QE07 (Outfall F).

The following discussion presents a summary of peak discharges, and possible trends in the PAH data observed in Figure 5-2a through 5-2p over the first three years of monitoring:

• QE01 - The highest PAH concentrations occurred during the 1Qtr1Yr, 1Qtr2Yr, and 4Qtr2Yr monitoring events.

- QE02 and QE03 There are no apparent trends from the first to second year monitoring among quarters. At QE03, PAH concentrations peaked during the 2Qtr2Yr monitoring event. At QE02, two peaks in PAH concentrations occurred, during the 3Qtr1Yr, and 4Qtr2Yr monitoring events. PAH concentrations during the third year of monitoring remained relatively low. Sediments along Outfall G are shallow in most locations. The peaks in location may be also related to the availability of depositional sediments. Although peaks from QE02 and QE03 do not occur during the same monitoring events, peaks may be related to spill events, and the depositional characteristics of each sample location.
- QE04 The peak concentration of PAHs occurred during the 3Qtr1Yr monitoring event.
 The peak is not seen in the second or third years of monitoring. Sediments at QE04
 consist of large smooth gravel. Depositional sediment is not present in this stream
 segment. PAH concentrations did not exceed BHRA screening criteria during the third
 year of monitoring.
- QE05 A spike in PAH concentrations occurred during the 4Qtr1Yr monitoring events.
 PAH concentrations did not exceed BHRA screening criteria during the third year of monitoring..
- QE06 The highest PAH concentrations occurred at the third and fourth quarter sample locations during the first two years of monitoring. During the third year of monitoring, PAH concentrations peaked during the first monitoring event (equivalent to the third quarter location), and decreased during the second monitoring event (fourth quarter location). The concentrations decreased from the first to second year of monitoring, and increased during the third year monitoring. The sediments at these sample locations are highly organic, and the creek is marshy.
- QE07 PAH concentrations peaked during the 1Qtr2Yr monitoring event. Similarly to QE06, PAH concentrations peaked during the first monitoring event (first quarter location), and decreased during the second monitoring event (third quarter location) during the third year of monitoring. During the third year of monitoring, the highest concentrations of benzo(b)fluoranthene, benzo(a)pyrene, and chrysene were detected in segment QE07 during the 1Evnt3Yr monitoring event.

- QE08 The highest PAH concentrations occurred at the third quarter sample location during the first two years of monitoring. During the third year of monitoring, the highest concentrations of benzo(k)fluoranthene, and chrysene were detected in segment QE08 during the 2Evnt3Yr monitoring event (third quarter location).
- QE09 PAH concentrations did not exceed screening criteria until the 2Evnt3Yr monitoring event (third quarter location). The exceedance only occurred for Chrysene.
- QE10 PAH concentrations only exceeded screening criteria during the 4Qtr1Yr monitoring event. Prior to and since that time, PAH concentrations have been very low.
- QE11 No exceedances of screening criteria occurred at the downstream sampling boundary.
- QW02 and QW03 Peak PAH concentrations occurred during the 1Qtr2Yr sampling event.
- QW04 Peak PAH concentrations occurred during the 3Qtr2Yr monitoring event.
- QW05 PAH concentrations peaked, and exceeded screening criteria during the 1Qtr1Yr, 3Qtr1Yr, and 1Evnt3Yr (first quarter location) monitoring events. PAH concentrations were very low during the second year of monitoring. During the third year of monitoring, the highest concentrations of benzo(a)anthracene and chrysene were detected in segment QW05 during the 1Evnt3Yr monitoring event.
- QW06 No exceedances of screening criteria occurred at the downstream sampling boundary.

Figures 5-3a through 5-3j present the upstream to downstream concentration gradient of PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene) in 0-6 inch bgs sediment samples by event for East Soldier Creek. Similarly, Figures 5-4 a through 5-4j present the upstream to downstream concentration gradient of PAHs in 0-6 inch bgs sediment samples for West Soldier Creek.

The figures illustrate that concentrations of analytes decrease off-base as compared to on-base. Exceedances of 10⁻⁶ screening criteria (BHRA and HHRA I) occurred during only one quarter the first year of quarterly monitoring on a off-base portion of East Soldier Creek (QE10). Analytical results from the downstream most segments of both East and West Soldier Creek (QE11, and QW06) did not exceed BHRA or HHRA I screening criteria during any sampling event.

The primary source of release of PAHs to the environment occurs as a result of combustion emissions. Discharges may also occur from spills of fuel oils, gasoline, etc., or from runoff from sources such as roadways, asphalt parking lots, or railroad ties.

5.2.1.4 Volatiles

Sixteen volatile compounds (VOCs) were detected in sediment samples during the third year of monitoring. The VOCs detected during the third year of monitoring are presented in Table 5-5. Volatile concentrations in sediment did not exceed BHRA or HHRA I screening criteria.

The most frequently detected volatile compound was acetone. Acetone was detected in 53 analytical samples with a maximum concentration of 0.26 mg/kg and average concentration of 0.04 mg/kg. The highest concentration of acetone was detected in the sediment sample from QE08-901, collected from the pond on East Soldier Creek. The sample was collected during 1Evnt3Yr monitoring from 0-6 inches.

5.2.1.5 Tentatively Identified Compounds

A total of 509 tentatively identified compounds (TICs) were identified in sediments during the third year of monitoring. TICs are compounds detected during analysis of volatile organic and semivolatile organic compounds and are not target compounds, internal standards, or surrogate standard compounds and whose response is greater than 10% of the nearest internal standard compound. The identity of a TIC must be determined using a mass spectral library search for the best match.

Table B-9 in Appendix B, presents the frequency of detection, minimum, and maximum concentrations for all TICs detected in the sediment. The sample location at which the maximum concentration of a TIC was detected is presented in Table B-10 in Appendix B.

5.2.2 Surface Water

A total of 29 (15 during 1Evnt3Yr and 14 during 2Evnt3Yr) surface water samples were collected during the third year of monitoring. The number of surface water samples varied each event due to the intermittent nature of the streams. Sample locations at segments QW01, QW02, and QW04, and the sample location at Tributary B were dry during both monitoring events. The sample location at QW03 was dry during 2Evnt3Yr monitoring.

Appendix B contains tables which summarize analyte detections by monitoring event. Table 5-11 presents the frequency of detection, maximum, minimum, and average concentrations of analytes detected in surface water samples. Statistical summaries were calculated based on detected concentrations in analytical samples excluding detections in QA/QC samples and non-detects. The sample location at which the maximum concentration of an analyte was detected is presented in Table 5-12. Table 5-13 presents a comparison of maximum analyte concentrations of the surface water samples for each monitoring event of the first three years of monitoring to the maximum RI analytical results.

5.2.2.1 Metals

Twenty-two total metals were detected during the second year of monitoring. Total metals detected in surface water by Method 6010/6020/7060/7196/7740 were: aluminum, antimony, arsenic, barium, cadmium, calcium, chromium, cobalt, copper, hexavalent chromium, iron, lead, magnesium, manganese, molybdenum, nickel, potassium, selenium, silver, sodium, vanadium, and zinc.

The most frequently detected total metals and their maximum concentrations were barium (0.62 mg/L), calcium (72.4 mg/L), chromium (0.045 mg/L), cobalt (0.0018 mg/L), manganese (0.24 mg/L), and nickel (0.052 mg/L). These metals were detected in all 29 surface water samples collected during the third year of monitoring.

The highest total metal concentration was calcium (72.4 mg/L) from sample QE02-901, collected from Outfall G. The sample was collected the during 1Evnt3Yr monitoring. The average concentration of calcium from the third year of monitoring was 47.3 mg/L.

Twenty-one dissolved metals were detected during the third year of monitoring. Dissolved metals detected in surface water by Method 6010/6020 were: aluminum, antimony, barium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, potassium, selenium, silver, sodium, dialliam, vanadium, and zinc.

The most frequently detected dissolved metals and their maximum concentrations were barium (0.59 mg/L), chromium (0.021 mg/L), and vanadium (0.02 mg/L). These metals were detected in all 29 surface water samples.

The highest dissolved metal concentration was calcium (71.5 mg/L) from sample QE08-1001 collected from the pond, on-base East Soldier Creek. The sample was collected during 2Evnt3Yr monitoring. The average concentration of calcium from the third year of monitoring was 50.86 mg/L.

No total or dissolved metals concentrations exceeded BHRA or HHRA I screening criteria in surface water samples.

5.2.2.2 PCBs and Chlorinated Pesticides

Aroclor 1254 was the only PCB/pesticide detected in surface water during the third year of monitoring. Aroclor 1254 was detected in one surface water sample at QE02-901 (0.58 ug/L), collected from Outfall G. The sample was collected during 1Evnt3Yr monitoring.

PCB and pesticide concentrations did not exceed BHRA or HHRA I risk based screening criteria in surface water.

5.2.2.3 Semivolatiles

Bis(2-Ethylhexyl)phthalate was the only SVOC detected in surface water during the third year of monitoring. Bis(2-Ethylhexyl)phthalate was detected in twelve surface water

samples. The maximum concentration (0.14 mg/L) occurred at QE09-1001. This sample was collected from just upstream of Douglas Boulevard on-base East Soldier Creek during 2Evnt3Yr monitoring.

Semivolatile concentrations in surface water did not exceed BHRA or HHRA I risk based screening criteria.

5.2.2.1 Volatiles

Twelve VOCs were detected in surface water during the third year of monitoring. The VOCs detected during the third year of monitoring are presented in Table 5-11.

The highest VOC concentration was ethanol (0.041 mg/L) detected in sample QE02-901. This sample was collected at Outfall G during 1Evnt3Yr monitoring.

Acetone was the most frequently detected VOC, being reported in 25 surface water samples. The highest concentration of acetone was 0.012 mg/L detected in sample QE02-1001, collected from Outfall G during 2Evnt3Yr monitoring. The average surface water concentration of acetone detected during the third year of monitoring was 0.0049 mg/L.

Volatiles concentrations in surface water did not exceed BHRA or HHRA I risk based screening criteria.

5.2.2.5 Wet Chemistry

Surface water samples were analyzed for the following wet chemistry parameters: alkalinity, chemical oxygen demand, hardness, total dissolved solids, total organic carbon, total suspended solids, chloride, and sulfate. Results of wet chemistry analysis are presented in Table B-7 and Table B-8 in Appendix B.

5.2.2.6 Tentatively Identified Compounds

A total of 64 TICs were identified in surface water during the third year of monitoring. TICs are compounds detected during analysis of volatile organic and semivolatile organic compounds and are not target compounds, internal standards, or surrogate standard compounds and whose response is greater than 10% of the nearest internal standard

compound. The identity of a TIC must be determined using a mass spectral library search for the best match.

Table B-11 in Appendix B, presents the frequency of detection, minimum, and maximum concentrations for the TICs detected in surface water. The sample location at which the maximum concentration of a TIC was detected is presented in Table B-12 in Appendix B.

TABLE 5-1 CARCINOGENIC AND NON-CARCINOGENIC BASELINE HEALTH RISK ASSESSMENT (BHRA) SCREENING CRITERIA FOR SEDIMENT

Compound Name	Non-Caracinogenic	Carcinogenic 10-6	Carcinogenic 10-4
Inorganics (mg/kg)		,	
Arsenic	2.10E+06		
Mercury	6.20E+05		
Barium	1.40E+08		
Cadmium	1.00E+06		
Chromium	1.00E+07		
Manganese	2.10E+08		
Nickel	4.10E+07		
Silver	6.20E+06		
Vanadium	1.40E+07		
Zine	4.10E+08		
Semivolatile Organics (ug/kg)			-
1,2-Dichlorobenzene	7.90E+08		
1,4-Dichlorobenzene		1.00E+06	1.00E+08
2,4-Dimethylphenol	1.80E+08		
2-Methylphenol	4.40E+08		
3/4-Methylphenol	4.40E+08		
Acenaphthene	3.80E+07		
Anthracene	1.90E+08		
Benzo(a)anthracene		1.60E+03	1.60E+05
Benzo(a)pyrene		1.60E+03	1.60E+05
Benzo(b)fluoranthene		1.60E+03	1.60E+05
Benzo(k)fluoranthene		1.60E+03	1.60E+05
bis(2-Ethylhexyl)^phthalate	1.30E+07	1.00E+05	1.00E+07
Butyl benzyl phthalate	1.30E+08		
Chrysene		1.60E+03	1.60E+05
Dibenz(a,h)anthracene		1.20E+05	1.20E+07
Fluoranthene	2.50E+07		
Fluorene	2.50E+07		
Indeno(1,2,3-cd)pyrene		1.20E+05	1.20E+07
Naphthalene	2.50E+06		
Pyrene	1.90E+07		
Volatile Organics (ug/kg)			
Acetone	4.10E+07		
Benzene		3.30E+04	3.30E+06
Carbon disulfide	5.70E+08		
Chlorobenzene	8.30E+06		
Chloroform	4.10E+06	1.60E+05	1.60E+07
cis-1,2-Dichloroethene			
Ethylbenzene	5.70E+08		
Methylene chloride	2.50E+07	1.30E+05	1.30E+07
Tetrachloroethene	4.10E+06	1.90E+04	1.90E+06
Toluene	8.30E+07		
trans-1,2-Dichloroethene			
Trichloroethene	5.705 - 00	1.40E+06	1.40E+08
Vinyl acetate Yylones (total)	5.70E+09		
Xylenes (total)	8.30E±08		

TABLE 5-2 CARCINOGENIC AND NON-CARCINOGENIC BASELINE HEALTH RISK ASSESSMENT (BHRA) SCREENING CRITERIA FOR SURFACE WATER

Compound Name	Non-Caracinogenic	Carcinogenic 10-6	Carcinogenic 10-4
Inorganics (mg/L)			
Arsenic	8.10E+00		
Barium	2.50E+02		
Beryllium	1.50E+02		
Cadmium	2.10E+00		
Chromium	1.10E+01		
Manganese	3.50E+02		
Nickel	6.20E+01		
Silver	3.50E+02		
Vanadium	5.60E+02		
Zinc	1.30E+03		
Semivolatile Organics (ug/L)			
Benzoic acid	1.00E+05		
Chrysene		1.20E+03	1.20E+05
Fluoranthene	2.20E+04		
Pyrene	5.90E+06		
Volatile Organics (ug/L)			
1,1,1-Trichloroethane	1.10E+05		
Acetone	5.00E+05		
Benzene		2.00E+01	2.00E+03
Bromodichloromethane	8.40E+05	1.70E+03	1.70E+05
Bromoform	1.90E+06	3.30E+04	3.30E+06
Carbon disulfide	5.30E+03		
Chlorobenzene	1.30E+04		
Chloroform	2.00E+04	7.60E+02	7.60E+04
cis-1,2-Dichloroethene			
Dibromochloromethane	1.30E+06	2.00E+03	2.00E+05
Methylene chloride	1.70E+05	8.90E+02	8.90E+04
letrachloroethene	5.70E+04	3.10E+02	3.10E+04
l'oluene	5.60E+03		
rans-1,2-Dichloroethene			
Trichloroethene		2.80E+02	2.80E+04
Xylenes (total)	1.10E+07		2.0017.01

TAb... 5-3

CARCINOGENIC AND NON-CARCINOGENIC HUMAN HEALTH RISK ASSESSMENT I (HIHRA I) SCREENING CRITERIA FOR SEDIMENT

Chemical	Reasonable	Total	Total	Non-carcinogenic (a)	(arcinogenic (b)	Corcinogonic (b)	(b)
	Maximum	Hazard	Cancer Risk	Action	Action	Action	Action
	Exposure	Quotient		Level	$(Risk = 1 \times 10^6)$	(Risk = 1×10^{5})	$(Risk = 1 \times 10^{4})$
	(mg/kg)			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Inorganics							
Antimony	6.42E+00	3.69E-03		1.74E+03			
Beryllium	5.61E-01	2.58E-05	2.38E-07	2.18E+04	2.36E+00	2.36E+01	2.36E - 02
Cadmium	1.23E+02	2.83E-02		4.35E+03			
Chromium	7.64E+02	8.94E-06		1.00E+06 ^(c)			
Cobalt	8.22E+00	3.15E-05		2.61E+05			
Lead	1.62E+02						
Mercury	1.64E-01	1.26E-04		1.31E+03			
Nickel	2.09E+02	2.40E-03		8.71E+04			
Silver	4.95E+00	2.28E-04		2.18E+04			
Thallium	1.09E · 00	3.13E-03		3.48E+02			
Vanadium	2.03E+01	6.66E-04		3.05E+04			
Pesticides and PCBs							
Adrin	4.50E-02	4.53E-04	9.91E-08	9.93E+01	4.54E-01	4.54E+00	4.54F · 01
alpha-BHC	2.00E-03		1.63E-09		1.23E+00	1.23E+01	1.23E+02
alpha-Chlordane	7.48E-02	3.77E-04	1.26E-08	1.99E+02	5.94E+00	5.94E · 01	5.94E+02
Aroclor 1254	1.70E+00	2.57E-02		6.62E+01			
delta-BHC	1.27E-01						
Heptachlor	9.70E-01	5.86E-04	5.65E-07	1.65E+03	1.72E+00	1.72E+01	1.72E -02
Volatiles							
2-Butanone (MEK)	6.66E-03	3.36E-09		1.00E+06 ^(c)			
Acetone	3.98E-02	1.20E-07		3.31E+05			
Actylonitrile	4.50E-03	4.53E-05	9.91E-09	9.93E+01	4.54E-01	4.54E+00	4.54E+01
Benzene	5.60E-03		1.68E-12		3.33E+03	3.33E+04	3.33E+05
Carbon disulfide	9.47E-03	2.86E-08		3.31E+05			
Chlorobenzene	7.00E-03	1.06E-07		6.62E+04			
Ethylbenzene	1.30E-02	3.77E-09		1.00E+06 ^(c)			
Methylene chloride	6.95E-03	3.50E-08	6.75E-12	1.99E+05	1.03E+03	1.03E+04	1.03E+05
Tetrachloroethene	5.45E-03	1.58E-08		3.45E+05			
Toluene	2.20E-03	3.32E-09		6.62E+05			
trans-1, 2-Dichloroethene	1.50E-03	2.27E-08		6.62E+04			
Trichloroethene	1.07E-02	5.16E-08	1.22E-12	2.07E+05	8.79E+03	8.79E+04	8.79E+05
Vinyl chloride	5.66E-03		1.11E-10		5.09E+01	5.09E+02	5.09E · 03
Xylenes (total)	3.25E-02	4.71E-10		1.00E + 06 ^(c)			
Semivolatiles							
1,2,4-Trichlorobenzene	4.30E-01	8.25E-07		5.21E+05			
1,2-Dichlorobenzene	5.07E-01	1.63E-07		1.00E · 06 ^(c)			
1,3-Dichlorobenzene	2.79E+00	9.08E-07		1.00E+06 ^(c)			
1.4-Dichlorobenzene	2.10E-01		5.21E-11		4.03E - 03	4.03E · 04	4.03E · 05

TAB... 5-3

CARCINOGENIC AND NON-CARCINOGENIC HUMAN HEALTH RISK ASSESSMENT I (HIHRA I) SCREENING CRITERIA FOR SEDIMENT

Exposure Quotient Cancer Risk 1.000 1.31E-05 6.000 2.4-Dinetaphthalene 3.50E-01 5.07E-07 2.4-Dinetaphthalene 6.90E-02 2.61E-07 2.A-Librachtylaphthalene 1.00E-01 2.61E-07 2.A-Librachtylaphthalene 1.00E-01 2.61E-07 3.A-Lichtylaphthalene 1.00E-01 9.61E-07 A-A-Litrachtylaphthalene 1.00E-01 9.61E-07 Acchaphthalene 1.00E-01 9.61E-07 Acchaphthalene 1.00E-01 1.11E-06 Acchaphthalene 1.10E-01 1.11E-06 Acchaphthalene 1.50E-00 3.71E-06 Benzolaphtylene 1.15E-04 3.83E-05 Benzolaphthalene 1.52E-00 1.13E-04 Benzolaphthalene 5.51E-01 1.13E-04 Benzolaphthalene 5.51E-01 3.36E-09 Benzolaphthalene 5.51E-01 1.23E-09 Benzolaphthalene 5.51E-01 1.15E-04 Benzolaphthalene 3.70E-01 1.36E-08 Benzolaphthalene)
Exposure Quotient (mg/kg) Outlient hithalene 1.30E.00 1.31E.05 hithalene 1.30E.01 5.07E.07 hothalene 3.50E.01 5.07E.07 henol 3.50E.01 5.07E.07 nee 2.41E.01 1.21E.06 ene 3.90E.02 7.56E.08 ene 7.50E.02 7.56E.08 hracene 3.23E.00 3.75E.06 perylene 6.04E.01 6.04E.05 perylene 6.00E.01 6.04E.05 rambene 7.61E.01 1.23E.09 exylphthalate 4.90E.00 1.23E.09 hthalate 3.70E.01 1.3E.06 hthalate 3.70E.01 1.6E.05 n 2.13E.01 1.6E.05 n 2.13E.01 1.6E.06 n 2.13E.01 1.24E.06 s.30E.00 4.00E.02 1.36E.09 s.30E.00 4.00E.02 1.36E.09 s.30E.00 4.00E.02 1.36E.06	Action	Action	Action	Action
(mg/kg) (mg/kg) hthalane 1.30E+00 1.31E-05 hthalane 1.30E+01 5.07E-07 hthalane 6.90E-02 2.61E-07 hthalane 1.10E-01 1.11E-06 henol 1.10E-01 1.11E-06 henol 1.60E-01 9.67E-07 ne 2.41E-01 1.21E-06 ene 7.50E-02 7.56E-08 hracene 3.23E+00 3.75E-06 ene 1.52E+00 1.15E-04 pranthene 3.23E+00 3.23E-06 ene 1.52E+00 3.23E-09 exylphthalate 4.90E-01 6.04E-05 phthalate 3.70E-01 1.23E-09 exylphthalate 3.70E-01 1.3E-06 nthalate 3.70E-01 1.3E-06 nthalate 4.90E-02 1.16E-06 nthalate 4.50E-02 1.3E-06 1.70E-01 1.6E-05 1.70E-02 1.16E-06 2.33E-09 4.00E-05 2.35E-09	Level (1	$(Risk = 1 \times 10^6)$	$(Risk = 1 \times 10^{-5})$	(Risk = 1×10^4)
hybralene 1.30E + 00 1.31E - 05 hybralene 3.50E - 01 5.07E - 07 hybralene 6.90E - 02 5.61E - 07 hybralene 1.10E - 01 1.11E - 06 henol 1.60E - 01 1.11E - 06 henol 1.60E - 01 1.11E - 06 henol 1.50E - 02 7.56E - 08 hracene 3.20E + 00 1.23E - 09 hracene 1.52E + 00 1.23E - 09 hracene 5.51E - 01 1.23E - 09 hradene 6.00E - 01 1.23E - 09 hradene 3.70E - 01 1.23E - 06 hradene 1.70E - 01 1.23E - 06 hradene 3.70E - 01 1.23E - 06 hradene 3.70E - 01 1.23E - 06 hradene 4.50E - 02 1.33E - 06 hradene 4.50E - 02 1.33E - 06 hradene 5.33E - 01 4.33E - 07 hradene 6.00E - 01 1.32E - 06 hradene 7.70E - 01 1.32E - 06	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Phenol 3.50E-01 5.07E-07 Phithalene 6.90E-02 2.61E-07 Phithalene 1.10E-01 1.11E-06 Phenol 1.60E-01 9.67E-07 Phenol 1.60E-01 1.21E-06 Phenol 1.50E-02 7.56E-08 Phacene 3.20E-00 7.56E-08 Phacene 1.22E-00 7.56E-09 Phythalene 5.51E-01 7.32E-09 Phithalene 3.70E-01 7.32E-09 Phithalene 3.70E-01 7.32E-06 Phithalene 3.70E-01 7.32E-06 Phithalene 3.70E-01 1.23E-06 Phithalene 3.70E-01 1.23E-06 Phithalene 3.70E-01 1.61E-05 Phithalene 3.70E-01 1.61E-05 Phithalene 4.50E-02 1.36E-09 Phithalene 5.33E-01 1.41E-06 Phithalene 5.33E-01 1.34E-07 Phithalene 5.33E-01 4.33E-06 Phithalene 5.33E-01 4.33E-07 Phithalene 5.33E-01 4.33E-07 Phithalene 5.33E-01 4.33E-07 Phithalene 5.33E-01 4.33E-06 Phithalene 5.33E-01 4.33E-07 Phithalene 6.00E-01 4.33E-01 Phithalene 6.00E-01 Phithalene 6.00E-01 4.33E-01 Phithalene 6.00E-01 4.33E-01 Phithalene 6.00E-01 4.33E-01 Phithalene 6.00E-01 Phithalene 6.00E-01 4.33E-01 Phithalene 6.0	9.93E+04			
henol 6.90E-02 2.61E-07 bhthalene 1.10E-01 1.11E-06 henol 1.60E-01 9.6TE-07 cere 3.90E+00 3.77E-06 cere 3.23E+00 1.15E-04 hracene 3.23E+00 1.15E-04 hracene 3.23E+00 1.23E-09 prylene 6.00E-01 6.04E-06 phthalate 3.70E-01 1.23E-09 cxylphthalate 4.90E+00 1.03E-07 thalate 3.70E-01 1.61E-05 hradate 3.40E-02 1.05E-09 thalate 4.50E-02 1.16E-06 thalate 5.33E-01 1.33E-01 1.34E-06 ccdpyrene 5.33E-01 4.33E-07 thalate 5.33E-01 1.34E-07 thalate 5.33E-01 1.34E-06 ccdpyrene 5.33E-01 4.33E-07 thalate 5.33E-01 1.34E-07 thalate 5.33E-01 4.33E-07	6.91E+05			
henol 1.10E-01 1.11E-06 henol 1.60E-01 9.67E-07 henol 1.60E-01 9.67E-07 henol 1.60E-01 9.67E-07 hence 3.90E-00 3.77E-06 7.50E-02 7.56E-08 heache 1.52E-00 1.15E-04 hracene 3.23E-00 1.15E-04 hracene 3.23E-00 1.15E-04 hracene 7.61E-01 1.23E-09 perylene 6.00E-01 6.04E-06 hythalate 3.70E-01 1.23E-09 hythalate 3.70E-01 1.6E-06 hythalate 1.70E-01 1.6E-06 hythalate 1.70E-01 1.6E-06 hythalate 2.13E-01 1.6E-06 hythalate 4.50E-02 1.16E-06 hythalate 5.33E-01 1.34E-06 hythalate 5.33E-01 1.24E-06 c-dpyrene 5.38E-01 4.32E-06	2.65E+05			
henol 1.60E-01 9.67E-07 ne 2.41E-01 1.21E-06 nene 3.90E+00 3.77E-06 7.50E-02 7.56E-08 1.10E+01 1.15E-04 Inserte 3.28E+00 1.15E-04 narathene 7.61E-01 1.23E-09 exylphthalate 5.51E-01 1.23E-09 phthalate 3.70E+01 1.23E-09 phthalate 3.70E+01 1.23E-09 halate 4.50E+02 1.05E-07 halate 4.50E-02 1.16E-06 n 1.70E-01 1.61E-05 halate 4.50E-02 1.16E-06 halate 4.50E-01 1.36E-09 cdpyrene 5.38E-01 4.00E-05 halate 4.50E-02 1.36E-09 s.30E+00 4.00E-05 halate 5.38E-01 4.36E-06 cdpyrene 5.38E-01 4.38E-07 cdpyrene 7.70E-01 4.34E-07 halate 4.50E-01 4.34E-07 cdpyrene 7.20E-01 4.34E-07	9.93E+04			
1.21E-06 1.21E-06 1.21E-06 1.21E-06 1.20E-02 1.56E-08 1.19E-01 1.15E-04 1.19E-01 1.15E-04 1.19E-01 1.15E-04 1.19E-01 1.15E-04 1.19E-01 1.15E-04 1.15E-04 1.15E-04 1.22E-00 1.22E-00 1.22E-01 1.23E-09 1.23E-06 1.23E-06	1.65E+05			
1.0E+00 3.70E-06 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-09 7.56E-01 7.56E-09 7.56E-01 7.56E-09 7.56E-01 7.56E-01 7.56E-09 7.56E-01 7.56E-01 7.56E-09 7.56E-01 7.56E-01 7.56E-02 7.56E-02 7.56E-03	1.99E+05			
fracene 7.50E-02 7.56E-08 hracene 1.19E+01 1.15E-04 ene 1.2E+00 1.15E-04 oranthene 7.61E-01 6.04E-06 oranthene 7.61E-01 6.04E-06 oranthene 5.51E-01 1.23E-09 exylphthalate 4.90E-00 1.23E-09 exylphthalate 3.70E-01 5.36E-08 pthalate 3.70E-01 1.03E-07 nthalate 7.70E-02 1.16E-06 nthalate 4.50E-02 1.16E-06 nhalate 4.50E-02 1.36E-09 s.38E-01 1.61E-05 halate 4.50E-01 4.00E-05 c-dlpyrene 5.38E-01 4.38E-06 c-dpyrene 7.27E-01 7.32E-06	1.00E+06 ^(c)			
1.19E+01 1.15E-04 1.19E+01 1.15E-04 1.23E+00 1.25E+00 1.25E+00 1.25E+00 1.25E+01 1.25E+01 1.25E+02 1.25E+03 1.25E+03 1.25E+04 1.25E+04 1.25E+04 1.25E+05 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+07 1.25E+06 1.25E+07 1.25E+06 1.25E+07 1.25E+06 1.25E+06 1.25E+06 1.25E+07 1.25E+06 1.25E+06 1.25E+07 1.25E+06 1.25E+07 1.25E+06 1.25E+07 1.25E+08 1.25E+0	9.93E+05			
hracene 3.23E+00 ere 1.52E+00 oranthene 7.61E-01 perylene 6.00E-01 6.04E-06 oranthene 5.51E-01 1.23E-09 exylphthalate 4.90E+00 1.23E-09 phthalate 3.70E+01 5.36E-08 phthalate 3.70E+00 1.03E-07 orthalate 7.70E-02 1.16E-06 inflate 4.50E-02 1.16E-06 halate 4.50E-02 1.16E-06 halate 4.50E-01 1.6E-05 inhalate 4.50E-01 1.6E-05 state-09 4.00E-05 1.36E-09 cdpyrene 5.38E-01 4.34E-06 redpyrene 5.38E-01 4.34E-07	1.04E+05	4.20E-01	4.20E+00	4.20E+01
ene 1.52E+00 oranthene 7.61E-01 perylene 6.00E-01 6.04E-06 ranthene 5.51E-01 i.70E-01 1.23E-09 exylphthalate 4.90E+00 5.36E-08 phthalate 3.70E+00 1.03E-07 orthalate 3.40E-02 1.03E-07 orthalate 7.70E-02 1.03E-06 inhalate 1.70E-01 1.61E-06 inhalate 4.50E-02 1.36E-09 c. 3.30E+00 4.00E-05 i. 3.50E+00 4.00E-05 i. 3.50E+00 4.00E-05 i. 3.50E+00 4.00E-05 i. 3.50E+00 4.00E-05 i. 3.50E-00 4.00E-05 i. 3.50E-00 4.00E-05 i. 3.50E-00 7.32E-06 i. 3.50E-01 7.32E-06		1.06E+01	1.06E+02	1.06E - 03
perylene 7.61E-01 6.04E-06 perylene 6.00E-01 6.04E-06 oranthene 5.51E-01 1.23E-09 l 1.70E-01 1.23E-09 exylphthalate 4.90E-00 5.36E-08 phthalate 3.70E+00 1.03E-07 uthalate 3.70E+02 1.05E-06 n 7.70E-02 1.16E-06 n 2.13E-01 1.51E-06 inhalate 4.50E-02 1.36E-09 inhalate 4.50E-02 1.36E-09 inhalate 4.50E-02 1.34E-06 cdlpyrene 5.38E-01 4.34E-06 redpyrene 7.27E-01 7.32E-06		1.06E+00	1.06E+01	1.06E+02
perylene 6.00E-01 6.04E-06 oranthene 5.51E-01 1.23E-09 1 1.70E-01 1.23E-09 phthalate 4.90E-00 5.36E-08 phthalate 3.70E-01 5.36E-08 nthalate 3.70E-02 1.03E-07 nthalate 7.70E-02 1.16E-06 nthalate 1.70E-01 1.61E-05 nhalate 4.50E-02 1.36E-09 c. 33E-01 1.34E-06 c. 30E+00 4.00E-05 1.71E+00 1.24E-06 c. 33E-01 4.34E-07		1.06E+01	1.06E+02	1.06E+03
syaruthene 5.51E-01 1.70E-01 1.23E-09 phthalate 4.90E-00 5.36E-08 phthalate 3.70E-01 5.36E-08 nthalate 3.70E-02 1.03E-07 uthalate 7.70E-02 1.16E-06 nthalate 7.70E-02 1.16E-06 nthalate 1.70E-01 1.61E-05 nhalate 4.50E-02 1.36E-09 s.30E+00 4.00E-05 1.36E-09 r.71E+00 1.24E-06 s.38E-01 4.34E-07 r.72E-01 7.32E-06	9.93E+04			
1.70E-01 1.23E-09 1.23E-09 1.23E-09 1.23E-09 1.23E-09 1.23E-09 1.23E-09 1.23E-09 1.23E-08 1.23E-08 1.23E-08 1.23E-09 1.23E-05 1.23E-05 1.23E-05 1.23E-09 1.23E-06 1.23E-06		1.06E+02	1.06E+03	1.06E+04
exylphthalate 4.90E + 00 phthalate 3.70E + 00 shthalate 3.70E + 00 nthalate 1.03E - 07 nthalate 7.70E - 02 nthalate 1.70E - 01 nhalate 4.50E - 02 1.36E - 05 1.16E - 05 nhalate 4.50E - 02 1.36E - 09 1.71E - 00 4.00E - 05 1.71E - 00 1.24E - 06 -cdpyrene 5.38E - 01 4.50E - 01 7.32E - 06	1.00E+06 ^(c)			
phthalate 3.70E-01 5.36E-08 nthalate 3.40E+02 1.03E-07 nthalate 7.70E-02 1.16E-06 nthalate 1.70E-01 1.6E-05 nhalate 4.50E-02 1.36E-09 s.30E+00 4.00E-05 r.31E-00 1.24E-06 c-dlpyrene 5.38E-01 4.3E-07 r.72F-01 7.32E-06		5.51E+02	5.51E+03	5.51E - 04
a.70E+00 othalate 3.40E-02 1.03E-07 othalate 7.70E-02 1.16E-06 nnthracene 1.70E-01 1.61E-05 nhalate 4.50E-02 1.36E-09 thalate 5.30E+00 4.00E-05 c-dlpyrene 5.38E-01 4.34E-07 thalate 7.27E-01 7.32E-06	$1.00E + 06^{(c)}$			
nthalate 3.40E-02 1.03E-07 othalate 7.70E-02 1.16E-06 nthalate 1.70E-01 1.61E-05 nhalate 4.50E-02 1.36E-09 thalate 4.50E-02 4.00E-05 cdpyrene 5.38E-01 4.34E-06 c.20pyrene 4.50E-01 4.34E-07		1.06E+03	1.06E - 04	1.06E+05
uthalate 7.70E-02 1.16E-06 nothracene 1.70E-01 1.61E-05 n 2.13E-01 1.61E-05 thalate 4.50E-02 1.36E-09 thalate 5.30E+00 4.00E-05 cdpyrene 5.38E-01 4.34E-06 thalate 7.27E-01 7.32E-06	3.31E+05			
nntracene 1.70E-01 1.61E-05 n 2.13E-01 1.61E-05 thalate 4.50E-02 1.36E-09 5.30E+00 4.00E-05 1.71E+00 1.24E-06 -cdpyrene 5.38E-01 4.34E-07 2.72F-01 7.32E-06	6.62E+04			
halate 2.13E-01 1.61E-05 halate 4.50E-02 1.36E-09 5.30E+00 4.00E-05 1.71E+00 1.24E-06 5.38E-01 4.3E-07 7.27E-01 7.32E-06		1.06E+00	1.06E · 01	1.06E+02
thalate 4.50E-02 1.36E-09 5.30E+00 4.00E-05 1.71E+00 1.24E-06 5.38E-01 4.3E-07 7.27E-01 7.32E-06	1.32E+04			
5.30E+00 4.00E-05 -cdpyrene 5.38E-01 4.34E-07 4.50E-01 4.34E-07 5.37E-01 4.34E-07	1.00E+06 ^(c)			
-cd)pyrene 5.38E-01 1.24E-06 4.50E-01 4.34E-07 7.27E-01 7.32E-06	1.32E+05			
-cd)pyrene 5.38E-01 4.34E-07 4.50E-01 7.32E-06	1.00E+06 ^(c)			
4.50E-01 7.27E-01		1.06E+01	1.06E+02	1.06E+03
7.27E-01	1.00E+06 ^(c)			
	9.93E+04			
Phenol 6.30E-02 3.17E-08	1.00E+06 ^(c)			
Pyrene 6.40E+00 6.45E-05	9.93E+04			
Note: a). Action level " (Risk Assessment Cone HQ) x HI where HI = 1.0				
o), section reversitives assessment converging to the career rate. Then the converging is assigned as the cleaning goal of ("alculated action level is greater than 100% concentration and 100% concentration is assigned as the cleaning goal.	anım goal			
c) c atematica action reverse greater man two occurrentiation of concentration is assigned as the citation				

TAB__ 5-4

CARCINOGENIC AND NON-CARCINOGENIC HUMAN HEALTH RISK ASSESSMENT (HHRA I) SCREENING CRITERIA FOR SURFACE WATER

('bemical	Reasonable	Total	Total	Von-carcinogenic (a)	Carcinogenic (b)	(d) Singaponisae.	(q) : (q)
	Maximum	Hazard	Cancer Risk	Action	Action	Action	Action
	Exposure	Quotient		Level	(Risk = 1×10^6)	(Risk = 1×10^{5})	(Risk = 1×10^{-4})
	(mg/L.)			(mg/L)	(mg/L)	(mg/L)	(mg/L)
Inorganics							
Arsenic	1.40E-03	1.65E-03	3.18E-07	8.50E-01	4.41E-03	4.41E-02	4.41E-01
Cadmium	2.64E-03	1.88E-03		1.40E+00			
Cobalt	5.23E-03	3.10E-05		1.68E+02			
Molybdenum	2.64E-01	1.22E-03		2.16E+02			
Nickel	2.99E-02	5.92E-04		5.06E+01			
Thallium	1.20E-03	5.29E-03		2.27E-01			
Vanadium	6.66E-03	3.46E-04		1.92E+01			
Pesticides and PCBs							
Aldrin	5.36E-05	7.82E-04	1.71E-07	6.85E-02	3.13E-04	3.13E-03	3.13E-02
Volatile Organics							
2-Butanone (MEK)	2.80E-03	3.65E-08		7.67E+04			
Acetone	5.30E-03	1.64E-05		3.23E+02			
Вготобогт	2.46E-03	9.64E-07	5.44E-11	2.56E+03	4.53E+01	4.53E+02	4.53E+03
Carbon disulfide	1.00E-03	1.60E-08		6.25E+04			
Chlorobenzene	1.80E-03	7.05E-07		2.56E+03			
Chloroform	1.80E-03	1.41E-06	3.07E-11	1.28E+03	5.86E+01	5.86E+02	5.86E+03
Methylene chloride	1.25E-02	6.44E-05	1.24E-08	1.94E+02	1.00E+00	1.00E+01	1.00E+02
Tetrachloroethene	9.79E-03	7.66E-06		1.28E+03			
Toluene	1.70E-03	6.65E-08		2.56E+04			
Trichloroethene	1.00E-02	1.31E-05	3.09E-10	7.67E+02	3.25E+01	3.25E+02	3.25E+03
Vinyl chloride	1.00E-03		5.31E-09		1.88E-01	1.88E+00	1.88E+01
Semicolatile Organics							
3.4-Methylphenol	1 70F-03	9 66F-06		1.76E : 0.2			
4-Nitrophenol	2.00E-03	3.34E-05		5.99E+01			
Benzoic acid	3.90E-03	7.63E-09		5.11E+05			
Benzyl alcohol	1.70E-03	4.44E-08		3.83E+04			
bis(2-Ethylhexyl)phthalate	3.60E-03	3.10E-04	3.72E-08	1.16E+01	9.67E-02	9.67E-01	9.67E+00
Fluoranthene	1.50E-03	2.94E-07		5.11E+03			
N-Nitroso-di-n-propylamine	1.80E-03		3.67E-07		4.91E-03	4.91E-02	4.91E-01
Phenol	1.40E-03	3.12E-07		4.49E+03			
Notes of Angles Level (Diel Accesses	(Diel. Agreement Constition of the horse	Transaction 1.0					

Note: a). Action level (Risk Assessment Cone HQ) x HI where HI = 1.0 b). Action level (Risk Assessment Cone Cancer risk) x Target cancer Risk

TABLE 5-5
STATISTICAL EVALUATION OF ANALYTES DETECTED IN SEDIMENT SAMPLES
THIRD YEAR LONG-TERM MONITORING

	Frequency of		Maximum	Minimum
Analyte	Detection	Average Result	Result	Result
PCBs and Pesticides - Method 8	3080 (mg/kg)			
4,4'-DDD	3/74	0.0367	0.042	0.031
4,4'-DDE	1/74	0.0085	0.0085	0.0085
Aldrin	3/74	0.0354	0.097	0.0025
alpha-Chlordane	1/74	0.0130	0.013	0.013
Aroclor 1254	22/74	7.2134	82	0.054
Aroclor 1260	1/74	0.6800	0.68	0.68
Dieldrin	1/74	0.0021	0.0021	0.0021
Endosultan II	1/74	0.0560	0.093	0.0021
gamma-Chlordane	2/74	0.0215	0.023	0.02
Heptachlor	1/74	0.0081	0.0081	0.0081
Heptachlor epoxide	1/74	0.0028	0.0028	0.0028
Semivolatile Organics - Method	8270 (mg/kg)			
1,2-Dichlorobenzene	1/74	0.79	1.6	0.13
1,3-Dichlorobenzene	1/74	0.38	0.38	0.38
1,4-Dichlorobenzene	4/74	0.33	1.1	0.042
1-Chloronaphthalene	6/74	0.11	0.23	0.046
2,4-Dimethylphenol	1/74	0.06	0.064	0.064
2-Chloronaphthalene	8/74	0.21	0.5	0.053
2-Methylnaphthalene	14/74	0.57	4.5	0.048
3-Methylcholanthrene	1/74	0.25	0.25	0.25
Acenaphthene	22/74	0.62	2.2	0.044
Acenaphthylene	1/74	0.04	0.043	0.043
Acetophenone	1/74	0.11	0.11	0.11
Anthracene	28/74	1.05	4.4	0.043
Benzidine	1/74	0.22	0.22	0.22
Benzo(a)anthracene	48/74	1.95	9.9	0.046
Benzo(a)pyrene	48/74	2.06	11	0.05
Benzo(b)fluoranthene	51/74	2.29	13	0.04
Benzo(g,h,i)perylene	49/74	1.09	5.3	0.042
Benzo(k)fluoranthene	50/74	2.08	12	0.039
Benzoic acid	1/74	0.28	0.28	0.28
bis(2-Ethylhexyl)phthalate	53/74	2.99	19	0.047
Butyl benzyl phthalate	2/74	0.49	0.51	0,47
Chrysene	52/74	2.45	12	0.044
Di-n-butyl phthalate	5/74	0.13	0.3	0.044
Di-n-octyl phthalate	2/74	0.58	0.66	0.5
Dibenz(a,h)anthracene	25/74	0.60	1.9	0.057
Dibenz(a.j)acridine	1/74	0.33	0.33	0.33
Dibenzofuran	17/74	0.51	1.5	0.041
Fluoranthene	59/74	5.29	32	0.053
Fluorene	22/74	0.76	2.5	0.053
Indeno(1,2,3-cd)pyrene	46/74	1.16	4.7	0.041

TABLE 5-5
STATISTICAL EVALUATION OF ANALYTES DETECTED IN SEDIMENT SAMPLES
THIRD YEAR LONG-TERM MONITORING

	Frequency of		Maximum	Minimum
Analyte	Detection	Average Result	Result	Result
Isophorone	1/74	0.47	0.47	0.47
Naphthalene	18/74	0.98	4	0.046
Phenanthrene	51/74	3.70	21	0.041
Pyrene	57/74	3.61	25	0.054
Total Metals - Methods 6010/7	060/7471/7740 (mg/kg			
Aluminum	74/74	6357	22700	750
Antimony	9/74	6	11.4	3.9
Arsenic	74/74	3	15.7	0.62
Barium	74/74	507	3200	63.2
Beryllium	58/74	1	1.7	0.27
Cadmium	54/74	48	837	0.57
Calcium	74/74	28765	141000	839
Chromium	74/74	318	4020	10.6
Cobalt	74/74	15	166	1.2
Copper	74/74	121	2010	2.5
Iron	74/74	10959	24400	3420
Hexavalent Chromium	1/74	8	8.42	8.42
Lead	74/74	102	934	4.9
Magnesium	74/74	4853	27100	764
Manganese	74/74	571	7430	70.2
Mercury	53/74	0	8.3	0.013
Molybdenum	44/74	16	262	1
Nickel	74/74	234	6470	6.6
Potassium	74/74	855	3520	133
Selenium	16/74	2	10.3	0.51
Silver	53/74	25	725	0.43
Sodium	16/74	252	1090	107
Thallium	27/74	52	127	13.6
Vanadium	74/74	28	117	5.3
Zinc	74/74	189	2310	7.9
Volatile Organics - Method 826	50 (mg/kg)			
1,1,2,2-Tetrachloroethane	1/74	0.0027	0.0027	0.0027
1,1-Dichloroethane	1/74	0.0016	0.0016	0.0016
2-Butanone (MEK)	33/74	0.0123	0.048	0.0025
Acetone	53/74	0.0411	0.26	0.0019
Acrylonitrile	1/74	0.0015	0.0015	0.0015
Benzene	1/74	0.0210	0.021	0.021
Carbon disulfide	9/74	0.0043	0.0092	0.0013
Chlorobenzene	20/74	1.0791	18	0.0014
Chloromethane	3/74	0.0109	0.025	0.0038
Ethylbenzene	8/74	0.0115	0.053	0.0013
Methylene chloride	26/74	0.0035	0.021	0.0014
Styrene	11/74	0.0844	0.5	0.0019

TABLE 5-5
STATISTICAL EVALUATION OF ANALYTES DETECTED IN SEDIMENT SAMPLES
THIRD YEAR LONG-TERM MONITORING

Analyte	Frequency of Detection	Average Result	Maximum Result	Minimum Result
Toluene	6/74	0.0150	0.034	0.0015
Trichloroethene	1/74	0.0019	0.0019	0.0019
Vinyl chloride	2/74	0.0021	0.0028	0.0013
Xylenes (total)	4/74	0.0031	0.0061	0.0015

TABLE 5-6
MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATED SAMPLE LOCATIONS
FOR ANALYTES DETECTED IN SEDIMENT SAMPLES
THIRD YEAR LONG-TERM MONITORING

			1	Detection	
Analyte	Result	Client Description	Footnotes	Limit	% Water
PCBs and Pesticides - Method	8080 (mg/l	·		/ · · · · · · · · · · · · · · · · · · ·	l l
4,4'-DDD	0.042	SC-QE09-SD-1001	J	0.054	38.7
4,4'-DDE	0.0085	SC-QW03-SD-1001	M	0.0039	16.1
Aldrin	0.097	SC-QE08-SD-1001	M	0.043	60.1
alpha-Chlordane	0.013	SC-QE01-SD-1001	JM	0.015	55.6
Aroclor 1254	82	SC-QW03-SD-902		14	52.5
Aroclor 1260	0.68	SC-QE01-SD-1001		0.3	55.6
Dieldrin	0.0021	SC-QE11-SD-1001	JM	0.0038	12.4
Endosulfan II	0.093	SC-QE06-SD-1001	М	0.056	40.9
gamma-Chlordane	0.023	SC-QE01-SD-1001	М	0.015	55.6
Heptachlor	0.0081	SC-QE07-SD-1003	М	0.0022	22.6
Heptachlor epoxide	0.0028		М	0.002	16.1
Semivolatile Organics - Metho					
1,2-Dichlorobenzene	1.6	SC-QW04-SD-903	J	2.7	38.5
1,3-Dichlorobenzene	0.38	SC-QE08-SD-1002	J	1.9	30.9
1,4-Dichlorobenzene	1.1	SC-QE08-SD-1002	J	1.9	30,9
1-Chloronaphthalene	0.23	SC-QE09-SD-902	J	2	19.1
2,4-Dimethylphenol	0.064	SC-QE09-SD-1001	J	0.54	38.7
2-Chloronaphthalene	0.5	SC-QE09-SD-1001	J	0.54	38.7
2-Methylnaphthalene	4.5	SC-QE08-SD-1002		1.9	30.9
3-Methylcholanthrene	0.25	SC-QE08-SD-1001	J	3.3	60.1
Acenaphthene	2.2	SC-QE03-SD-1001		1.6	19.0
Acenaphthylene	0.043	SC-QW03-SD-1001	J	0.39	16.1
Acetophenone	0.11	SC-QE06-SD-1001	J	1.1	40.9
Anthracene	4.4	SC-QE03-SD-1001		1.6	19.0
Benzidine	0.22	SC-QW03-SD-903	J	15	23.9
Benzo(a)anthracene	9.9	SC-QW05-SD-901		2.2	25.0
Benzo(a)pyrene	11	SC-QE07-SD-901		2	17.7
Benzo(b)fluoranthene	13	SC-QE07-SD-901		2	17.7
Benzo(g,h,i)perylene	5.3	SC-QW04-SD-901	J	7.9	58.3
Benzo(k)fluoranthene	12	SC-QE08-SD-1001		1.7	60.1
Benzoic acid	0.28	SC-QE01-SD-1001	J	7.2	55.6
bis(2-Ethylhexyl)phthalate	19	SC-QE06-SD-902		3.1	46.6
bis(2-Ethylhexyl)phthalate	19	SC-QW04-SD-903		2.7	38.5
Butyl benzyl phthalate	0.51	SC-QE08-SD-1001	J	1.7	60.1
Chrysene	12	SC-QE07-SD-901		2	17.7
Chrysene	12	SC-QE08-SD-1001		1.7	60.1
Chrysene	12	SC-QW05-SD-901		2.2	25.0
Di-n-butyl phthalate	0.3	SC-QE06-SD-903	J	2.2	25.8
Di-n-octyl phthalate	0.66	SC-QW05-SD-901	J	2.2	25.0
Dibenz(a,h)anthracene	1.9	SC-QE07-SD-901	J	2	17.7
Dibenz(a,j)acridine	0.33	SC-QE07-SD-901	J		17.7

TABLE 5-6
MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATED SAMPLE LOCATIONS
FOR ANALYTES DETECTED IN SEDIMENT SAMPLES
THIRD YEAR LONG-TERM MONITORING

	T			Detection	T
Analyte	Result	Client Description	Footnotes	Limit	0/ 11/24
			Footnotes		% Water
Dibenzofuran	1.5	SC-QE03-SD-1001	J	1.6	19.0
Fluoranthene	32	SC-QE07-SD-901		2	17.7
Fluorene	2.5	SC-QE03-SD-1001		1.6	19.0
Indeno(1,2,3-cd)pyrene	4.7	SC-QW04-SD-901	J	7.9	58.3
Isophorone	0.47	SC-QE11-SD-1002		0.41	19.6
Naphthalene	4	SC-QE07-SD-1002		0.41	19
Phenanthrene	21	SC-QW05-SD-901		2.2	25.0
Pyrene	25	SC-QW05-SD-901		2.2	25.0
Total Metals - Methods 6010/70					
Aluminum	22700	SC-QW02-SD-901		33.1	69.8
Antimony	11.4	SC-QW04-SD-903		9.8	38.5
Arsenic	15.7	SC-QE03-SD-901		1.8	44.4
Barium	3200	SC-QE11-SD-901		1.2	16.8
Beryllium	1.7	SC-QW02-SD-901		0.66	69.8
Cadmium	837	SC-QE09-SD-1001		0.82	38.7
Calcium	141000	SC-QE10-SD-901		47.6	16.0
Chromium	4020	SC-QW04-SD-903		1.6	38.5
Cobalt	166	SC-QW03-SD-902		2.1	52.5
Copper	2010	SC-QW03-SD-902		4.2	52.5
Iron	24400	SC-QW02-SD-901		33.1	69.8
Hexavalent Chromium	8.42	SC-QW06-SD-901		0.1	07.0
Lead	934	SC-QW04-SD-903		8.1	38.5
Magnesium	27100	SC-QE11-SD-901		24	16.8
Manganese	7430	SC-QW04-SD-903		1.6	38.5
Mercury	8.3	SC-QE02-SD-1001		1.3	26.8
Molvbdenum	262	SC-QW03-SD-902		4.2	52.5
Nickel	6470	SC-QW03-SD-902		8.4	52.5
Potassium	3520	SC-QW01-SD-903		592	15.5
Selenium	10.3	SC-QW03-SD-902		2.1	52.5
Silver	725	SC-QW03-SD-902		2.1	52.5
Sodium	1090	SC-QW07-SD-1003		597	
Thallium	127	SC-QW02-SD-901	J	662	16.3 69.8
Vanadium		SC-QW02-SD-902	J		
Zinc		SC-QW03-SD-902		1.3	22.5
Volatile Organics - Method 8260	1	50 Q 11 0.5-3D-302		4.2	52.5
1,1,2,2-Tetrachloroethane		SC-QE02-SD-901	J	0.0059	15.6
1,1-Dichloroethane		SC-QE03-SD-1001	J	0.0059	15.6
2-Butanone (MEK)		SC-QE08-SD-1001	J		19.0
Acetone	 	SC-QE06-SD-901	В	0.13	60.1
Acetone		SC-QE08-SD-901	В	0.029	66.0
Acrylonitrile		SC-QU01-SD-901	J		59.1
Benzene		SC-QE08-SD-1001		0.13	21.2
	17.1721	oc ∆r00-2D-1001	J	0.063	60.1

TABLE 5-6
MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATED SAMPLE LOCATIONS
FOR ANALYTES DETECTED IN SEDIMENT SAMPLES
THIRD YEAR LONG-TERM MONITORING

Amoluto	DI	CII I D		Detection	
Analyte	Result	Client Description	Footnotes	Limit	% Water
Carbon disulfide	0.0092	SC-QE02-SD-1001	J	0.017	26.8
Chlorobenzene	18	SC-QE08-SD-1002		0.9	30.9
Chloromethane	0.025	SC-QE06-SD-901	J	0.029	66.0
Ethylbenzene	0.053	SC-QW03-SD-902		0.053	52.5
Methylene chloride	0.021	SC-QE08-SD-1001	J	0.063	60.1
Styrene	0.5	SC-QW04-SD-901		0.06	58.3
Toluene	0.034	SC-QW03-SD-901		0.0076	33.8
Trichloroethene	0.0019	SC-QE03-SD-1001	J	0.0062	19.0
Vinyl chloride	0.0028	SC-QW03-SD-901	J	0.015	33.8
Xylenes (total)	0.0061	SC-QE06-SD-902	J	0.023	46.6

B=Compound is also detected in blank
J=Result is detected below the reporting limit or is an estimated concentration

M=Primary Result

TABLE 5-7
EXCEEDANCES OF BASELINE HEALTH RISK ASSESSMENT 10*SCREENING CRITERIA
TO A DEPTH OF ONE FOOT

Sample Location In			.01	10tr1 Yr	2Qtr1Yr	3Qtr1Yr	40tr1Yr	1Qtr2Yr	2Otr2Yr	30tr2Yr	4Otr2Vr	1 Evnt 3 Vr	2 Fynt 3 Vr
	Sampling	Analyte	Screening	Nev 1994	Jan 1995	April 1995	July 1995	Oct 1995	Mar 1996	May 1996	Aug 1996	Jan 1997	7661 Inl.
	Interval (ft)		Criteria	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections
			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ng/kg)	(ug/kg)	(ug/kg)	(ng/kg)	(ug/kg)	(ug/kg)
QEol	5 0.0	Benzo(a)anthracene	1,600	2,900	1,600	2,000	Æ	2,800	9	710	3,300	1,900	430
		Benzotalpyrene	1.600	2,200	1,100	2,200	Ê	2,400	670	009	3,000	1,500	9
		Benzorbiffuoranthene	009,1	6,100	2,600	4,000	Ê	5,700	1,500	1,000	2,600	1,200	0.04
		Benzotkifluoranthene	0.09	2	Ð	R	Q.	£	Q.	410	R	007	530
		(Thrysene	1.600	5,200	1,900	2,200	ND	2,300	086	860	4,100	2,000	(980)
QEoT	900	Benzot a Janthracene	1,600	1,100	750	11,000	008'9	530	2,600	8,600	16,000	830	1,600
		Вепдогарутеве	1.600	930	720	008'6	6,300	420	3,000	7,300	14,000	870	000
		Benzotb)fluoranthene	1,600	2,100	1,600	£	6,300	1,700	4,900	12,000	27,000	066	1 700
		Benzockifluoranthene	1,600	Ŗ	Ð	15,000	5,500	Ð	R	Ð	£	760	00+1
		("hrysene	1,600	1,100	860	14,000	7,200	800	3,300	8,600	18,000	901.1	2,200
QE02	9 7 9	Benzo(a)anthracene	009,1	SN	NS	13,000	SN	NS	NS	46,000	NS	1.600	NS
		Benzo(alpyrene	1.600	SZ	SN	11,000	SZ	SZ	SZ	35,000	SZ	1,600	2
		Benzochifluoranthene	1,600	SN	SZ	20,000	SS	NS	SN	43,000	SN	1,800	2
		Benzo(k)fluoranthene	1,600	SZ	SZ	2	SZ	SZ.	NS	23,000	SZ	1,100	SX.
		Chrysene	1,600	NS	NS	15,000	SZ	NS	SN	42,000	NS	1,900	Z.
QE03	, o-e	Benzo(a)anthracene	1,600	130	1,500	7,100	077	15,000	59,000	3,500	13,000	6,200	7,100
		Вепzo(а рутепе	1.600	017	1,300	5,600	750	12,000	45,000	3,000	11,000	7,000	5,900
		Benzo(b)fluoranthene	1,600	430	e E	11,000	90 7	21,000	83,000	5,900	14,000	8,300	9,600
-1.11		Benzoakifluoranthene	1,600	9	2,800	O.	2	2	2	R	7,400	5,100	4,900
		Chrysene	1.600	200	1,800	8,500	1,200	14,000	57,000	3,800	15,000	8,900	7,900
OE03	0.5-10	Benzo(a)anthracene	1,600	SZ	SN	SN	3,200	SN	SN	6,800	6,300	SN	NS
		Вепдокарутеле	1,600	SZ	SZ	SN	2,800	SZ	SN	5,600	6,200	SN	S. S.
-		Benzo(b)fluoranthene	1,600	SN	SZ.	SZ	3,400	SS	SN	11,000	9,300	SN	NS
		Senzosk ifluoranthene	009,	SZ	SZ	s Z	2,600	s S	SN	Ð	Ş.	SN	SN
	1	Thrysene	1,600	NS	NS	NS	3,900	NS	NS	6,600	7,200	SN	SZ
(Eut	S 0-0	Benzo(a)anthracene	1,600	7	S.	70	39,000	240	2	Ð	Ð	520	Ŕ
-		Вепzo(а)рутепе	0.09.1	2	SZ	61	26,000	230	9.	£	ĝ	470	Ê
		Senzo(b)fluoranthene	0091	를 i	S :	0, 1	S.	520	ON.	Ð	Ð	190	ĝ
	= `	Benzolk)thoranthene	000	-	2 S	9.5	39,000	Ĉ.	2 !	ê!	9	470	Î
OEas	2 2 2	Chrysene Dangstalanthrooms	1,600	9.3	CV.	130	35,000	300	ON.	Q.	9	730	ND
		Denzelaraminacene	0001	10 5	000	01.	3,000	000'1	1,100	081	250	130	002.
	<u> </u>	Denzo(a pyrene	1,60%	† §	080	}	3,200	0.300	016	0/1 7	065	150)
	<u> </u>	Senzo(D)lluoranmene	000,1	061 E	96. E	3 £	3,100	4.200	J. 700	360	1,200	180	1,000
	<u> </u>	Denzo(K)IIIuorantnene	000.1	2 :	₹. 5	O. S	3,400	OZ S	2		Q	150	1.300
		hrysene	000,1	150	8/0	086	4,400	1,800	1,200	240	810	230	1,300
9530	<u>e</u>	Benzo(a)anthracene	1,600	1,100	130	8,100	8,200	1,700	2,200	2,200	3,900	5,400	1,500
	<u> </u>	Benzota pyrene	009,1	920	90	7,400	8,800	1,500	1,900	2,100	3,300	6,800	Ş . –
		Benzochifluoranthene	009.1	2,000	300	10,000	008'6	2,800	3,700	4,200	006'9	8,800	2,100
	<u>= '</u> ,	Benzo(k)fluoranthene	1 600	2 2	2 2	4,700	9,300	ON.	Q į	9.	2	7,000	2,000
	٥	Chrysene	1,600	1.200	200	9,300	11,000	006,1	2,700	2,600	5,300	9,300	2,200

TABLE 5-7
ENCEEDANCES OF BASELINE HEALTH RISK ASSESSMENT 10* SCREENING CRITERIA
TO A DEPTH OF ONE FOOT

Sample Location QE00			10.	1Qtr1 Yr	2Qtr1 Vr	3Qtr1Yr	4Qtr1 Yr	1Qtr2Yr	2Qtr2Yr	3Qtr2Yr	4Qtr2Yr	1Evnt3Yr	2Evnt3Yr
	Sampling	Analyte	Screening	Nov 1994	Jan 1995	April 1995	July 1995	Oct 1995	Mar 1996	May 1996	Aug 1996	Jan 1997	Jul 1997
QEoe	Interval (ft)		Criteria	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections
OEoe			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ng/kg)	(ug/kg)	(ng/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	0.5-10	Benzokalanthracene	1,600	15,000	1,300	4,900	830	1,300	1,300	1,100	1,600	2,900	1,300
		Вепдоса врутеле	009,1	14,000	1,200	000'9	1,200	1,100	1,500	000,1	1,500	Ê	1,500
		Benzotbilluoranthene	0.09,1	28,000	2,100	11,000	1,800	Î	2,600	2,000	3,300	2,900	2,300
		Benzok ifluoranthene	1,600	2	Ð	Ð.	£	2,100	£	Q.	R	2,800	1,800
	1	Chrysene	1,600	19,000	1,300	009'9	1,300	1,400	1,800	1,300	2,200	4,000	2,300
QE07	5 050	Benzota Janthracene	009'1	1,100	2,000	2,300	720	26,000	2,100	1,000	088	9,100	Ŧ
		Вепдомарутеле	0.09,1	830	2,200	2,200	670	26,000	2,100	1,000	720	11,000	Ē
		Benzoch fluoranthene	1,600	1,600	3,900	3,800	1,300	49,000	4,000	2,000	1,400	13,000	6]0
		Benzockifluoranthene	1,600	8	£	£	Ê	£	Ê	Q.	S.	8,600	357
		Chrysene	1,600	1,200	2,000	2,200	1,000	33,000	2,700	1,400	1,000	12,000	760
QE07	0.5.1.0	Benzo(a)anthracene	1,600	1,600	3,000	4,000	SN	21,000	6,200	1,300	SN	4,700	1,700
		Вепдоса прутепе	1,600	00+1	2,700	2,600	SN	000.61	4,700	1,400	sz	2,000	1,900
		Benzotb)fluoranthene	1,600	2,600	4,900	4,500	SN	33,000	8,300	2,800	sz.	5,900	1,500
		Benzork ifluoranthene	1,600	QZ	Ð	Ê	SZ	ê	Ð	g B	SN	4,800	2,000
		("hrysene	1,600	1,800	3,300	3,300	SS	21,000	5,900	1,800	SN	6,300	2,100
QEus	, a-a	Benzo(a)anthracene	009,1	2,200	2,100	11,000	006,1	3,100	4,600	11,000	1,000	7,300	6,900
		Вепzоса рутепе	1,600	2,300	1,800	7,700	1,700	3,000	5,000	10,000	1,000	7,300	9,300
		Benzo(b)fluoranthene	1,600	4,400	4,000	19,000	3,300	6,500	009'6	20,000	2,000	009,6	11,000
		Benzotkifluoranthene	1,600	ON ON	S S	2	2	g	2	2	2	5,900	12,000
		Chrysene	1,600	2,800	2,600	15,000	2,700	4,300	5,700	12,000	1,500	9,200	12,000
QEON	0.5-3.0	Benzota janthracene	1,600	1,300	270	£	066	1,900	380	1,300	5,600	390	330
		Вепzо(а)рутепе	1,600	1,700	0 1 7	Ð	Ð	1,800	370	1,100	4,100	310	310
		Benzo(b)fluoranthene	1,600	3,500	520	350	1,600	2,400	909	2,200	7,300	ĴŦ.	3.70
		Benzo(k)fluoranthene	1,600	N.	8	£	2	_	250	S	S S	280	300
		Chrysene	1,600	2,100	350	280	1,600	2,800	500	1,800	6,500	7	630
QE09	0.03	Chrysene	1,600	380	Q.	1,100	780	150	530	120	g	160	1,700
QE10	0.0	Benzo(a)anthracene	1,600	Ē.	SN	Q	1,500	¥	NS	Ê	Q.	B	S
		Benzo(a)pyrene	1,600	2	SZ	9	1,300	47	SN	Q.	2	Ĵ.	Q.
	1501	Benzo(b)fluoranthene	1,600	2	SZ	9	2,300	3	SZ	R	2	ĝ	Ê
		Benzotkifluoranthene	1,600	2 !	s. S	<u> </u>	2	Đ:	s :	2	Q !	9	2
		Chrysene	1,600	Q.	S S	a S	7,100	3366	SZ	ND	CIN	Q.	9
	<u>د</u> و و و	Benzo(a)anthracene	0097	000	000	360	906,	7,200	2.8	0/8	7	1,300	2 :
-	-	Benzo(a)pyrene	006,1	000	90/	057	007.	36.1	F 3	ρς .	000'1	PV.	
		Benzo(b)fluoranthene	009,	760	00 1 .	018	7.00	⊋ !	08	06.	007	1,900	C)
		Benzo(k)fluoranthene	1,600	069	Ð.	Ê	e E	<u></u>	Ê	2	910	2,400	\$3
		Chrysene	1,600	850	730	520	2,200	2,700	98	1,000	1,200	1,700	68
QWn2	0.5-10	Benzo(a)anthracene	009,1	120	250	360	2,400	£	Ð	65	SZ	Ê	Ŝ
		Вепдо(а)рутепе	1,600	130	300	7	3,100	- 3	Ê	%	SS	ĝ	Û.
		Benzo(b)fluoranthene	1,600	130	085	790	4,600	ĝ	77	180	SS	Ê	Ê
		Benzo(k)thuoranthene	1,600	130	Î	Q.	2,200	9	S.	Q.	SN	9	Ŝ
		(Thrysene	0.09	160	330	<u> </u>	3,900	Î	S.	-110	NS	S.	ND

TABLE 5-7
ENCEEDANCES OF BASELINE HEALTH RISK ASSESSMENT 10 * SCREENING CRITERIA
TO A DEPTH OF ONE FOOT

Sample		_	2	1Or17r	2Otr1 Yr	30tr1Yr	4Otr1Vr	10rr2Vr	2Orr2Vr	Mr. V.	.V	· F	.44, 44
	Sampling	Analyte	Screening	Nov 1994	Jan 1995	April 1995	July 1995	Oct 1995	Mar 1996	May 1996	4007 June 1006	LEVILLY I	2 EVNUS 1 F
Location	Location Interval (R)		Criteria	Detections	Detections	Detections							
			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
QW03	5 0:0	Benzot alanthracene	009,1	110	086	S.	9	1,600	610	530	180	360	330
		Benzo(apyrene	1,600	2	1,600	1,100	470	2,100	880	099	780	350	450
		Benzotbifluoranthene	1,600	160	3,000	2,000	860	3,700	1,900	1,300	820	320	070
	•	Benzotkifluoranthene	1,600	Ē	Q.	2	Ð	Ð	R	Q.	850	570	- 06£
		(hrysene	1,600	190	1,700	1,100	510	2,500	910	740	720	390	470
OWG	0.5.10	Benzotalanthracene	1,600	NS.	7	÷	360	£	700	230	230	1,600	86
	_	Benzo(a)pyrene	1,600	SZ	- 93	9	340	N N	930	310	370	1,800	3
	-	Benzo(b)fluoranthene	1,600	SNS	Ê	Q.	59	180	1,700	650	Ĵ	2,200	120
		Benzotkifluoranthene	1,600	SZ	110	<u>~</u>	Ω Z	S.	2	Ŕ	320	2,300	100
	1	Chrysene	1,600	NS	67	dž	400	ON.	1,100	340	340	2.100	130
- towo	y 0-11	Benzo(a)anthracene	1,600	2,700	730	1,000	260	520	130	3,400	1,900	1.900	110
		Вепzo(а рутепе	1.600	2,600	1,100	1.300	300	18()	200	3,600	2,200	5,200	120
		Benzotbifluoranthene	1,600	2,600	2,100	Q.	059	790	350	7,000	2,600	4,200	5 7
	antagi	Benzo(k)fluoranthene	1,600	2,400	Я	2,400	Q.	O.	ON CIN	Q.	2,100	4,100	120
		Chrysene	1,600	3,000	1,200	1,200	390	630	190	4,100	2,700	2,500	051
to.M.O	0 - 50	Benzo(a)anthracene	1,600	1,100	2,500	1.200	2,400	350	120	1,100	68	4,700	7.6
	-	Вепzогарутеле	009	1,500	3,100	1,300	3,200	380	210	1,000	86	4,600	120
		Benzo(b)fluoranthene	900	2,200	6,000	2,200	6,600	£	390	1,800	120	5,600	120
		Benzo(k)tluoranthene	1,600	9	<u> </u>	9	Q	008	9	Ð	93	5,500	7
		Chrysene	1,600	1,500	3,100	1,100	5,000	450	190	1,200	120	6,100	170
QWins	0-0 × 0-0	Benzo(a)anthracene	1,600	360	- E	3,500	Ð	£	£	Q	£	9,900	Î
	<u> </u>	Benzo(a)pyrene	009]	430	- E	2,100	Ð	Ð	2	2	Ŝ	7,900	9
	<u></u>	Benzo(b)fluoranthene	1,600	920	æ	Ð	59	<u>-</u>	90	19	9	0,400) D
	ш	Benzotkifluoranthene	1,600	9	Ř	5,300	Q.	9	Ð	Û	Q.	8,300	£
	<u> </u>	Chrysene	1,600	1,100	ON ON	3,700	51	Û	ND	Q.	Q.	12,000	Î

NS - No sample obtained during the monitoring event ND - Non-detect Shading indicates exceedance of the BHRA 10-6 screening criteria

TABLE 5-8 EXCEEDANCES OF HUMAN HEALTH RISK ASSESSMENT 10 $^{\rm s}$ SCREENING CRITERIA

	-11		, 01	1Qtr1Yr	2Qtr1Yr	3Qtr1Yr	4Qtr1Yr	1Qtr2Yr	2Qtr2Vr	3Qtr2Yr	4Qtr2Yr	1Evnt3Yr	2Evnt3Yr
Sample	Sampling	Analyte	Screening	Nov 1994	Jan 1995	April 1995	July 1995	Oct 1995	Mar 1996	May 1996	Aug 1996	Jan 1997	Jul 1997
Location	Location Interval (ft)		Criteria	Detections									
			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
QE02	0.5-1.0	0.5-1.0 Benzo(a)pyrene	10,575	NS	SN	11000	NS	SN	NS	35000	NS	1600	SX
QE03	0-0.5	Benzo(a)pyrene	10,575	NS	NS	11000	SN.	12000	45000	3000	11000	7000	\$900
QE04	0-0.5	Benzo(a)pyrene	10,575	ND	SN	61	26000	230	QN	2	£	470	E S
0E06	0.5-1.0	0.5-1.0 Benzo(a)pyrene	10,575	14000	1200	0009	1200	1100	1500	1000	1500	CN	1500
QE07	6.0.5	Heptachlor	17,156	120	1200	Ð	52000	7000	630	320	QN	- CN	Q.
		Benzo(a)-pyrene	10,575	830	2200	2200	670	26000	2100	1000	720	0001	240
QE07	0.5-1.0	0.5-1.0 Benzo(a)-pyrene	10,575	1400	2700	0092	SZ	19000	1700	1400	SIX	0000	

Notes:

NS - No sample obtained during the monitoring event

ND - Non-detect

Shading indicates exceedance of the HHRA 10° screening criteria

TABLE 5.9 EVCEEDANCES OF HUMAN HEALTH RISK ASSESSMENT 10*SCREENING CRITERIA

Sample S	Sampling Interval (f)	Analyte	Screening	Nov 1994	Jon 1995	_			_	May 1996	7001		
			_		Jan 1770	April 1995	July 1995	Oct 1995	Mar 1996	114y 1770	Aug 1996	Jan 1997	Jul 1997
			Criteria	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections	Detections
			(gy/gn)	(ug/kg)	(ng/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
		Benzo(a)pyrene	1,057	2200	1100	2200	QN.	2,400	670	9009	3,000	1,500	240
		Benzoralanthracene	10,575	1100	05.	11000	0089	530	2,600	8,600	16,000	830	1,600
		Вепzо(а рутепе	1,05	930	07.	0086	6300	420	3,000	7,300	14,000	0,8	0097
		Benzotbifluoranthene	10,575	2100	1600	Q.	6300	1,700	4,900	12,000	27,000	066	002
	-	Dibenzia, hianthracene	1,052	Q.	ĝ	1500	1600	Q	420	976	- 2	Ñ	9
	7	Aldrın	45.4	N.	QN	ND	1600	810	Ð	Q.	ΩN	: 5	: 5
	0510	Benzotabanthracene	10,575	NS	SZ	13000	NS	NS	SN	46,000	NS	1,600	SX
		Benzotalpyrene	1,057	NS	SZ	11000	NS	NS	SZ	35,000	SZ	1,600	S. Z.
		Benzotbilluoranthene	10,575	SS	S.	20000	SN	SN	SZ	43,000	SN	1,800	X
		Dibenzia, hianthracene	1,057	SZ	SN	1300	NS	SN	SZ	4,100	SN	270	SZ
		Indeno(1,2,3-cd)pyrene	10,575	NS	SN	5600	NS	NS	NS	15,000	SZ	8,	n
QE03	500	Benzo(a)anthracene	10.575	130	1500	100	022	15,000	000'65	3,500	13,000	6,200	100
		Benzo(a)pyrene	1.057	210	1300	9099	250	12,000	45,000	3,000	11,000	7,000	5,900
		Benzoabifluoranthene	10,575	430	Q.	11000	1400	21,000	83,000	5,900	14,000	8,300	6,600
		Dibenzia, hianthracene	1,057	Ê	$\frac{\Omega}{N}$	069	N O	1,300	90009	460	Š	1,300	ĝ
		Indeno(1,2,3-cd/pyrene	10,575	ND	ND	2600	470	5,100	20,000	1,700	6,100	4,000	2,300
COEO3	0.5-1.0	Вепхматрутепе	1,057	NS	SZ	NS	2800	SN	NS	5,600	6,200	NS	NS
		Benzo(b)fluoranthene	10,575	NS	NS	SN	3400	NS	NS	11,000	9,300	SZ.	SZ
0.E04	0.0 S	Benzo(a)pyrene	1,057	QN	s N	[9	26000	230	ON.	QN	Q	470	Û
	LL	Benzo(a)anthracene	10,575	. 1	NS.	30	39000	240	Q	QN	Š	520	QX
	<u> </u>	Dibenzta, h)anthracene	1,057	g	SZ	ΩN	10000	ΩZ	QN	Ê	Š	120	Î
+	1	Indeno(1,2,3-cd)pyrene	10,575	QN	NS	Ð	19000	68	ND	CN CN	ΩN	300	ON
_	T	Benzo(a)pyrene	1,057	8.4	069	640	3200	1,300	910	170	590	150	940
0 90BQ	0.0.5 B	Benzo(a)pyrene	1,057	920	100	7400	8800	1,500	1,900	2,100	3,300	6,800	1,400
		Dibenzta, hianthracene	1.057	<u>S</u>	QN	1100	2200	170	350	290	ND	1,500	ΩŽ.
QE06 0.3	0.5-1.0 B	Benzo(a)anthracene	10,575	15000	1300	4900	830	1,300	1,300	1,100	1,600	2,900	1,300
	ш	Benzo(a)pyrene	1,057	14000	1200	0009	1200	1,100	1,500	1,000	1,500	Ř	1,500
	4	Benzo(b) fluoranthene	10,575	28000	2100	11000	1800	Ð	2,600	2,000	3,300	2,900	2,300
(E06	E I	Вепzo(а)рутепе	1,057	3100	850	NS	920	NS	1,800	960	830	1,600	SX

TABLE 5.9
ENCEEDANCES OF HUMAN HEALTH RISK ASSESSMENT 10*SCREENING CRITERIA

			, 01	1Qtr1Yr	2Qtr1Yr	3Qtr1Yr	4Qtr1Yr	1Qtr2Yr	2Qtr2Yr	3Qtr2Yr	4Qtr2Yr	1Evnt3Yr	2Evnt3Yr
Sample Location	Sampling Interval (R)	Analyte	Screening Criteria (ug/kg)	Nov 1994 Detections (ug/kg)	Jan 1995 Detections (ug/kg)	April 1995 Detections (ug/kg)	July 1995 Detections (ug/kg)	Oct 1995 Detections (ug/kg)	Mar 1996 Detections (ug/kg)	May 1996 Detections (ug/kg)	Aug 1996 Detections (ug/kg)	Jan 1997 Detections (ug/kg)	Jul 1997 Detections (ug/kg)
_egiò	5 070	Aldrin	454	52	ΩÑ	840	Ð	3,700	Ð.	QN	Ę	S S	S.
		alpha-Chlordane	5,934	Ð	<u>Q</u>	Š	Ñ	16,000	480	Ĝ	Ê	Ŝ	Ê
		Benzotalanthracetie	10,575	1100	2000	2300	120	26,000	2,100	1,000	988	9,100	륫
		Benzo(a)pyrene	1,05	830	2200	2200	0,9	26,000	2,100	1,000	720	11,000	95
		Benzo(b)fluoranthene	10,575	1600	3900	3800	1300	49,000	4,000	2,000	1,400	13,000	<u>a </u> 9
		Dibenzta,hianthracene	1,05"	54	ĝ	260	130	Ð	330	130	73	1,900	150
		Heptachlor	1,715	120	1200	Ŕ	52000	7,000	909	310	Z.	Ŝ	Я
		Indeno(1,2,3-cd)pyrene	10,575	440	1000	1200	420	14,000	1,100	510	250	4,600	340
(ES)	0.5.1.0	Aldru	15.4	£	Q.	059	NS	2,500	QZ	Ð	SN	Ŕ	Ŝ
		alpha-Chlordane	5,939	ê X	S	Ð	NS	15,000	250	86	NS	N ON	Q.
		Ben 20(a)anthracene	10.575	1600	3000	4000	NS	21,000	6,200	1.300	NS	4,00	1,700
		Benzota ipyrene	1,005	1400	2700	2600	NS	19,000	4,700	1,400	NS	5,000	006.1
		Benzorbifluoranthene	10,575	2600	4900	005+	NS	33,000	8,300	2,800	N.	5,900	1,500
		Dibenzia, hianthracene	1,05	160	QN	140	NS	2,100	926	196	NS	006	360
		Heptachlor	1,715	820	1.400	Q.	NS	4,600	390	140	NS	CIN.	CN
OBIL	-	Benzo(a)pyrene	1,057	2600	NS	270	NS	1,200	NS	ND	NS	5.4	Î
6E08	¥ 070	Benzo(a)anthracene	10,575	2200	2100	11000	0061	3,100	4,600	11,000	1,000	7,300	006'9
		Benzo(a)pyrene	1,057	2200	1800	7700	1700	3,000	5,000	10,000	1,000	7,300	9,300
		Benzorbifluoranthene	10,575	4400	4000	19000	3300	6,500	009'6	20,000	2,000	9,600	11,000
		Dibenz(a,h)anthracene	1,057	54	Ê	1600	ND	Æ	02.	001,1	Ð	1,600	1,500
QEOS	0.5-1 0	Вепго(арутепе	1,057	1700	240	£	ND	1,800	310	1,100	4,100	310	310
OE09	5 ()-()	Benzo(a)pyrene	1,057	830	Ð.	068	550	87	3.40	83	ND	130	1,300
QE09	. 1	Heptachlor	1,715	ON	36	Ð	3100	8	1.7	OD	ND	SN ON	NS
QEIO	0.0.5	Benzo(a)pyrene	1,057	QV.	NS	ND	1300	47	NS	OIN	Ð.	ND	Q.
COWO	0-0.5	Вепzo(а)рутепе	1,057	099	700	430	1400	1,900	16	096	1,000	1,700	55
QW02	0.5.1.0	Benzo(a)pyrene	1,057	130	300	440	3100	46	QN	96	NS	QN	QN.
QW03	0.0	Benzo(a)pyrene	1,057	Û.	1600	1100	470	2,100	088	099	780	350	450
QW03	0.5-1.0	Benzidine	420	NS	430	QN	N N	Ð.	QN	QV.	QN	Q.	Q
CW04	0.0 \$	Вепzо(а рутепе	1,057	2600	1100	1300	300	480	200	3,600	2,200	5,200	1.20
		Diben 21a. hianthracene	1.05	750	150	220	Ź	99	2	390	350	1,600	1.2

TABLE 5-9
EXCEEDANCES OF HUMAN HEALTH RISK ASSESSMENT 10*SCREENING CRITERIA

			• 01	1Qtr1Yr	2Qtr1Yr	3Qtr1Yr	4Qtr1Yr	1Qtr2Yr	2Qtr2Y r	3Qtr2Yr	4Qtr2Yr	1Evnt3Yr	2Evnt3Yr
Sample	Sample Sampling	Analyte	Screening	Nov 1994	Jan 1995	April 1995	July 1995	Oct 1995	Mar 1996	May 1996	Aug 1996	Jan 1997	Jul 1997
Location	ocation Interval (ft)		Criteria	Detections									
			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
QWod	1 1	u 5-1 u Benzoya pyrene	1,087	1500	3100	1300	3200	380	210	1,000	86	4,600	120
QW04		Benzolapyrene	1,050	580	NS	3100	3200	1,900	370	330	53	5,800	8.4
QWOS		0-0-5 Benzola)pyrene	1,057	430	N.	2100	ND	ON	ON.	ON	Œ.	7,900	CZ

Notes:

 $NS \cdot No$ sample obtained during the monitoring event $ND \cdot Non-detect$

Shading indicates exceedance of the HHRA 10% screening enteria

TABLE 5-10 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SEDIMENT

	17.1	171		212	-	71-U			_	_	_	_	_	-	` · ·	_	``	_	` - ' •	_	_
Metals (mg/kg)			-							O 1 M 111	0.0111	0-12-111	0-0 III	0-12 ln	0-6 in 6-12 in	╟	0-6 in 6-12 in	1	0-6 in 6-12 in	2 in 0-6 in	in 6-12 in
Aluminum	42300		14100	16400	23400	20000	21000	16400	13400	12900	21000	21200	17000	9490	16700	15400 2	23400	13500 22	77700 138	13800 12000	8940
Antimony		_			9.8	6.2	7.9	9.5													
Arsenic	15.7		7.5	7.5	7.2	5.3	8.4	7.2	9	5.7	5.2	8.7	10.5	3.2	6.4	6.1		7.3	15.7 7.	7.2 5.3	4.8
Barium	2910		3850	1010	2380	1350	1860	12000		1050	3350	807	2440	620							
Beryllium			=	1.3	1.2	1.2	1.5	1.2	0.85	0.82	1.2	1.4	1.2	0.72		-					
Boron															-	0.70	-				
Cadmium	428	15.7	123	328	83.2	132	-		415	108		306	85.1	120	390	158	242 2	29.8	80 11	112 837	7 255
Calcium	72500		181000	132000	128000	36000		0	1	74000 2	214000	07000 2	231000	54700 1	140000 9	94300 7			8	0	6
Chromium	2020	186	820	13350	1230	2430	1890	828		3210											
Copar	1.75		42.1	35./	123	91.8	61.7	56.7	21.6				51.8	80.4							
Tron	41200		19000	00996	240000	10800	31100	21000		+ .			-				-				
ead	586	150	318	-	775		- -		4400		7000 7	616	00/02		-	-	-	-			2
Magnesium	20400		22800	15200	16700	12000	0			17000 2	3			0500	17200	1/0	-	.			-
Manganese	1490		890	965	836	1750			-								1840	2940 17	1780 1890		-
Mercury	2.6		0.55	0.3	.9	ε.	.59	.81		-	•		4.7	.					- -	25 83	0 41
Molybdenum			23.8	26	62.6	34.8	36.9	56.4				136	135								
Nickel	2270		704	1090	3160	1370	2830	1220	747	861	3690	8790	3600	1790							
Potassium	2300		2030	2910	4230	4880	3200	2850	1930	1590	2830 2	2820	2780	1380		2450 3					
Selenium	10.2		3.4	4.2	12	2	4.3	.79	-	0.85	7.2	17.7	6.2	1.3	0.93	0.54					
Sodium	112		04.6	79.4	205	72.2	91.9	6.9	-	-	-	245	131	80			42.7 2				
The III.			020	010					-	-	-	392			270	296				242	517
Tin			0.58	0.19			7.		0.14	0.18	0.33	0.26	15. Acres 40. 40. 41		62.6	51.4 6	61.6	52.5	127 126	37.8	36.5
Vanadium	52.9		48.7	58.7	95.7	42.1	67.9	38.4	48.3	47	75.4	112	121	48 7	463	317	57		87 0 117	7 15 8	
Zinc	640		668	372	1790	506	1280	311		542								227 11			268
PCB's and Chlorinated			77 1 0110																		
Pesticides (mg/kg)		-									3			-	}						
1 A' DDE											260		890		72	63				0.042	2 0.037
4.4'-DDT								-				-				-				0.0085	5
Aldrin			57	120		1.4	840	650			3700 2	2500						0.0067	K7	0.007	7
alpha-BHC							2											0.0		0.00	
alpha-Chlordane				910						1	16000 1:	15000	480	250	120	98				0.013	
Aroclor 1016													-								
Aroclor 1221																					
Aroclor 1232		-																			
Aroclor 1248																					
Aroclor 1254			8300	5200	24000	33000	40000	18000	25000 1	17000	39000	19000	8	260000	20000	51000 61	C8 (MO19)	8200			
Aroclor 1260		_			-		+									.		100	70	0.68	47.0
beta-BHC																	000			0.00	
delta-BHC			140	370						ω	3200										
Dieldrin										2:		18000	890		890 2	280				0.0021	
Endosulfan II							-											-			
Endosulfan sulfate							1	-												0.093	0.079
			-		***		Ŧ														

TABLE 5-10 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SEDIMENT

ker/do26/annual.rptTab5ri/sd-cmp

TABLE 5-10 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SEDIMENT

(K)11uOranthene	Benzo(g,n,1)perylene	Benzo(a h :)I	Benzo(h)fluoranthene	Benzo(a)nyrene	Benzo(a)anthrocano	Benzidine	Anthracene	Aniline	Acetophenone	Acenaphthylene	Acenaphthene	a,a-Dimethylphenethyl-amine	7,12-Dimethylbenz(a)-anthracene	4-Nitrophenol	4-Nitroaniline	4-Chlorophenyl phenyl ether	4-Chloroaniline	4-Chloro-3-methylphenol	4-Bromophenyl phenyl ether	4-Aminobiphenyl	4,6-Dinitro-2-methylphenol	3/4-Methylphenol	3-Nitroaniline	3-Methylcholanthrene	3,3'-Dichlorobenzidine	2-Picoline	2-Nitrophenol	2-Naphthylamine	2-Methylphenol	2-MethyInaphthalene	2-Chlorophenol	2-Chloronaphthalene	2,6-Dinitrotoluene	2,6-Dichlorophenol	2,4-Dinitrotoluene	2,4-Dinitrophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2,3,4,6-Tetrachlorophenol	1-Naphthylamine	1-Chloronaphthalene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	1,2,4,5-Tetrachloro-benzene	Semivolatile Organics (mg/kg)	(cimi)	Xvlenes (10121)	Analytes
5300	4100	9200	0000	4800	1000		1500				1100		e										-		1700				68	1900		1600						160						4400	280	3100			3)	1000		Phase I Ph
2400	1800	0010	2000	2600			830				410											88								110				-			84						250	60		340					V 0-0 III	Phase II 1qtr1yı
670	1200	00087	3000	15000	100	160	4800				3100																			150		700					-						5200			200				5.4	-	-9
2800	1300	4000	2200	2100			620				260																										50						610			250				2.3	\parallel	1) 2qtr1yr
110	1700	6000	3100	3000			1400				490										00	58							100	3		210											2400	210		570					0-12111	⊣ ≘
15000	7600	19000	9800	11000	430		5800				1600										140	140							110	410																850					0-0 IN	
81	6800	20000	11000	13000			4400			1000	1800																		1000	1000	0,00	350											3500	280	100	2200				1.7	0-12 In	3qtr1yr (Apr 1995)
39000	17000	9800	26000	39000			26000			44	8000										100	160							1200	1300	1400	1400											1300		010	310					0-0 In	
2600	1900	6600	-	3200			840			010	510										220	300	-	_					S	3	1000	100				000	250					000	960	16							6-12 in	4qtr1yr (Jul 1995)
		49000	-	26000	350		11000			4200	1300	_								1/000									400	031	010	310										0,00	100		ī	44				2.2	0-6 in	1qtr2yr (Oct 95)
-		33000		21000			11000			2000	+																				000	6			-							0.71	420							2.4	6-12 in	(Oct 95)
	19000	83000	45000	59000	Albanian		36000			1/000	17000										440		1300	300					4000													1500	1500	3400	3000	NVVC				2.6	0-6 in	2qtr2yr (Mar 96)
	-	8300			ruter rurum.		2400			000	48										60	3								-	310	5										2000	2600								6-12 in	Mar 96)
-		20000	-	11000			3600			1900																			460							180						200	0.07	150	1600	140	140				0-6 in	3qtr2yr (May 96)
		43000			distant		29000			15000	16000												1000						10000		2100											4/0	4100	1800	670	5	?			770	6-12 in	May 96)
1-1	-	27000			290		5000	-	300	3100			230										- W.						610		280											330	0071	07.0	3600			-			0-6 in	2vr
320	+	9300	6200	5300			2600			01/	100		570													ALICE VA																								† ·	6-12 in	
8.6	-			9.9			2			2	-							of diff. but											0.28		0.22	-										0.046	0.051								0-6 in 6-12 in	1Evnt3Yr
5.5				4.7			0			0.86	-								***				-70						0.41		0.053											0.23			1.2						-	
		-		7.1			A A	0.11	0.043		_												0.25						0.47		0.5					0.064						0.16	0.13		0.22						0-6 in 6-12 in	Evnt3Yr (
2	700	23	1.9	1.7		1	2			0.28																			4.5		0.29											0.06	1.1	0.38	0.13					0.0031	6-12 in	Jan 97)

TABLE 5-10 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SEDIMENT

TABLE 5-11 STATISTICAL EVALUATION OF ANALYTES DETECTED IN SURFACE WATER SAMPLES THIRD YEAR LONG-TERM MONITORING

	Frequency of			T
Analyte	Detection	Average Result	Maximum Result	Minimum Resul
Dissolved Metals - Methods 601	0/6020 (mg/kg)			Translation Result
Aluminum	15/29	0.04	0.15	0.0021
Antimony	12/29	0.0003	0.00051	0.0031
Barium	29/29	0.39	0.59	0.00017
Cadmium	26/29	0.0006	0.0026	0.000084
Calcium	28/29	50.87	71.5	0.000054
Chromium	29/29	0.01	0.021	16.7
Cobalt	25/29	0.0002		0.0011
Copper	28/29	0.03	0.0014	0.000072
Iron	11/29	0.04	0.22	0.0013
Lead	22/29	0.0006	0.1	0.021
Magnesium	28/29	23.61	0.0018	0.0001
Manganese	28/29	0.02	35.3	1.1
Molybdenum	28/29	0.0027	0.12	0.00047
Vickel	28/29		0.019	0.00019
Potassium	27/29	0.01	0.038	0.00016
Selenium	14/29	2.06	10.7	1.2
Silver	3/29	0.0015	0.0024	0.00011
Sodium	28/29	0.0001	0.000088	0.000035
Thallium Thallium	2/29	18.55	32.6	4.1
/anadium	29/29	0.00005	0.000054	0.000044
Zinc	28/29	0.01	0.02	0.00029
CBs and Pesticides - Method 808	20/29	0.02	0.04	0.0036
aroclor 1254				
emivolatile Organics - Method 8	1/29	0.58	0.58	0.58
is(2-Ethylhexyl)phthalate				
otal Metals - Methods 6010/6020	12/29	0.0162	0.14	0.0016
luminum				
ntimony	22/29	0.10	0.73	0.0057
rsenic	12/29	0.0002	0.00055	0.00004
arium	8/29	0.0027	0.0038	0.0022
admium	29/29	0.40	0.62	0.00017
alcium	25/29	0.0013	0.016	0.000073
nromium	29/29	47.34	72.4	0.25
balt	29/29	0.01	0.045	0.0004
opper	29/29	0.0004	0.0018	0.000026
on	28/29	0.05	0.51	0.0013
exavalent Chromium	25/29	0.26	1.9	0.024
ad	1/29	0.01	0.01	0.024
agnesium	25/29	0.0018	0.015	0.00017
anganese	28/29	22.81	36.1	1.2
olybdenum	29/29	0.03	0.24	0.00016
ckel	27/29	0.0029	0.02	0.00016
J.C.I	29/29	0.01	0.052	0.00034

TABLE 5-11 STATISTICAL EVALUATION OF ANALYTES DETECTED IN SURFACE WATER SAMPLES THIRD YEAR LONG-TERM MONITORING

Analyte	Frequency of Detection	Average Result	Maximum Result	Minimum Resu
Potassium	28/29	2.04		
Selenium	18/29	0.0015	10.1	1.4
Silver	3/29	0.0003	0.0042	0.00043
Sodium	28/29	17.45	0.00062	0.00013
Vanadium	28/29	0.01	29.8	44
Zinc	28/29	0.01	0.018	0.0008
Volatile Organics - Method 8260 (mg/	(kg)	0.02	0.075	0.0034
2-Butanone (MEK)	8/29	0.0025	0.0062	
Acetone	25/29	0.0023	0.0062	0.0014
Acrolein	2/29	0.0030	0.012	0.003
Acrylonitrile	2/29	0.0022	0.0025	0.0019
Bromoform	1/29	0.00243	0.0027	0.0022
Bromomethane	3/29	0.0016	0.0016	0.0016
Chloromethane	3/29		0.0072	0.0015
Dibromochloromethane	1/29	0.0023	0.0036	0.0011
Ethanol	1/29	0.0018	0.0018	0.0018
odomethane	2/29	0.041	0.041	0.041
Methylene chloride	9/29	0.0015	0.0018	0.0012
tyrene	1/29	0.0026	0.0059	0.001
Vet Chemistry - Methods 130.2/160.1/	1/29	0.0034	0.0034	0.0034
Alkalinity, Bicarb. as CaCO3 at pH 4.5	24/20			
Alkalinity, Bicarb. as CaCO3 at pH 4.5	24/29	179.33	241	41.9
Alkalinity, Carb. as CaCO3 at pH 8.3	4/29	221.25	244	165
dkalinity, Total as CaCO3 at pH 4.5	6/29	7.68	25.7	0.75
Ikalinity, Total as CaCO3 at pH 4.5	24/29	181.58	267	41.9
hemical Oxygen Demand (Regular)	4/29	221.25	244	165
hloride	13/29	15.15	26.8	7.3
ardness as CaCO3	28/29	10.26	16.8	4
ulfate	28/29	208.81	312	54.7
otal Dissolved Solids	28/29	49.26	232	2.1
otal Organic Carbon	28/29	288.75	507	90
otal Suspended Solids	28/29	3.63	10.5	0.36
otal ouspended solids	11/29	20.85	136	1.6

TABLE 5-12

MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATE SAMPLE LOCATIONS
FOR ANALYTES DETECTED IN SURFACE WATER SAMPLES
THIRD YEAR LONG-TERM MONITORING

Analyte	Result	Client Description	Footnotes	Detection Limit
Dissolved Metals - Methods 6010/6	6020 (mg/kg)		roothotes	Limit
Aluminum	0.15	SC-QE10-SW-901	<u> </u>	0.015
Antimony	0.00051	SC-QW03-SW-901	J	0.015
Barium	0.59	SC-QE08-SW-1001		0.003
Cadmium	0.0026	SC-QE07-SW-901		0.001
Calcium	71.5	SC-QE08-SW-1001		0.0003
Chromium	0.021	SC-QE08-SW-1001		0.2
Cobalt	0.0014	SC-QW03-SW-901		0.001
Copper	0.22	SC-QE02-SW-1001		0.0005
Iron	0.1	SC-QW03-SW-901		0.001
Lead	0.0018	SC-QE10-SW-901		0.1
Magnesium	35.3	SC-QE08-SW-1001		0.001
Manganese	0.12	SC-QW07-SW-1001		0.2
Molybdenum	0.019	SC-QW03-SW-901		0.001
Vickel	0.038	SC-QW03-SW-901 SC-QW03-SW-901		0.001
Potassium	10.7	SC-QW07-SW-1001		0.0002
Selenium	0.0024			5
Silver	0.000088	SC-QW07-SW-1001	J	0.005
Sodium	32.6	SC-QE11-SW-1001	J	0.001
hallium	0.000054	SC-QW05-SW-1001		5
/anadium	0.02	SC-QE03-SW-901	J	0.0001
/anadium	0.02	SC-QE08-SW-1001		0.005
/anadium	0.02	SC-QE09-SW-1001		0.005
ine	0.02	SC-QW05-SW-1001		0.005
CBs and Pesticides - Method 8080	(ug/kg)	SC-QW05-SW-1001		0.01
aroclor 1254	0.58	00.000		
emivolatile Organics - Method 8270	(mg/lig)	SC-QE02-SW-901	J	0.98
is(2-Ethylhexyl)phthalate				
otal Metals - Methods 6010/6020/70	0.14	SC-QE09-SW-1001	В	0.0095
luminum				
ntimony	0.73	SC-QW07-SW-1001		0.05
rsenic	0.00055	SC-QW03-SW-901	J	0.003
arium	0.0038	SC-QW07-SW-1001	J	0.005
admium	0.62	SC-QE09-SW-1001		0.001
alcium	0.016	SC-QE09-SW-1001		0.001
romium	72.4	SC-QE02-SW-901		0.2
balt	0.045	SC-QE09-SW-1001		0.001
ppper	0.0018	SC-QW03-SW-901		0.0005
n en	0.51	SC-QE02-SW-1001		0.001
xavalent Chromium	1.9	SC-QW07-SW-1001		0.1
ad	0.01	SC-QE03-SW-901		0.01
agnesium	0.015	SC-QE09-SW-1001		0.001
anganese	36.1	SC-QE02-SW-901		0.2
olvbdenum	0.24	SC-QW07-SW-1001		0.001
ekel	0.02	SC-QW03-SW-901		0.001
	0.052	SC-QW03-SW-901		0.0002

TABLE 5-12

MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATE SAMPLE LOCATIONS
FOR ANALYTES DETECTED IN SURFACE WATER SAMPLES
THIRD YEAR LONG-TERM MONITORING

Analyte	Result	Client Description	Footnotes	Detection Limit
Potassium	10.1	SC-QW07-SW-1001		5
Selenium	0.0042	SC-QE02-SW-901	J	0.005
Silver	0.00062	SC-QE09-SW-1001	J	0.003
Sodium	29.8	SC-QW05-SW-1001	J	5
Vanadium	0.018	SC-QE02-SW-901		
Zinc	0.075	SC-QE02-SW-1001		0.0005
Volatile Organics - Method 8260 (mg/	kg)	2302 3 11 1001		0.01
2-Butanone (MEK)	0.0062	SC-QE67-CW 901	J	
Acetone	0.012	SC-QE02-SW-1001	J	0.01
Acrolein	0.0025	SC-QE09-SW-901	,	0.01
Acrylonitrile	0.0027	SC-QE09-SW-901	J	0.1
Bromoform	0.0016	SC-QE09-SW-901 SC-QE03-SW-901	J	0.1
3romomethane	0.0072	SC-QW05-SW-901	J	0.005
Chloromethane	0.0036		J	0.01
Dibromochloromethane	0.0018	SC-QW05-SW-901	J	0.01
Ethanol	0.0018	SC-QE03-SW-901	J	0.005
odomethane	0.0018	SC-QE02-SW-901	J	0.5
Methylene chloride		SC-QW05-SW-901	J	0.005
tyrene	0.0059	SC-QE03-SW-901	В	0.005
Vet Chemistry - Methods 130.2/160.1/	0.0034	SC-QW03-SW-901	J	0.005
Alkalinity, Bicarb. as CaCO3 at pH 4.5	214			
Alkalinity, Bicarb. as CaCO3 at pH 4.5	244	SC-QE08-SW-1001		5
alkalinity, Bicarb. as CaCO3 at pH 4.5	244	SC-QE09-SW-1001		5
lkalinity, Carb. as CaCO3 at pH 4.5	241	SC-QW05-SW-1001		5
lkalinity, Total as CaCO3 at pH 4.5	25.7	SC-QW05-SW-1001		5
lkalinity, Total as CaCO3 at pH 4.5	244	SC-QE08-SW-1001		5
lkalinity, Total as CaCO3 at pH 4.5	244	SC-QE09-SW-1001		5
hemical Organ D. 1-73	267	SC-QW05-SW-1001		5
hemical Oxygen Demand (Regular)	26.8	SC-QW07-SW-1001		20
ardness as CaCO3	16.8	SC-QE02-SW-901		0.5
ulfate	312	SC-QE02-SW-901		5
	232	SC-QE02-SW-901		2.5
otal Dissolved Solids	507	SC-QE02-SW-901		10
otal Organic Carbon	10.5	SC-QW03-SW-901		10
otal Suspended Solids	136	SC-QE09-SW-1001		2

¹ B=Compound is also detected in blank

J=Result is detected below the reporting limit or is an estimated concentration

COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER **TABLE 5-13**

	Phase 1	Phase II	10111	304.47								
Analytes	R		(Nov 1	994) (Jan 1995)	3Qtr1Yr (Apr 1995)	4Qtr1Yr (Jul 1995)	1Qtr2Yr (Oct 95)	2Qtr2Yr (Mar 96)	2Qtr2Yr 3Qtr2Yr 4Qtr2Yr		1Evnt3Yr	2Evnt3Yr
Metals (mg/L)										(06 8nv)	(7au 5/)	(70 Inc)
Aluminum	7.43		4.3	0.55	0.7	0.15	0.053	0000				
Antimony							0.000	0.038	0.18	0.21	90.0	0.73
Arsenic	0.0098		0.0026	0.0035	1,000	10000	0.040	0.00091	0.00037	0.00051	0.00055	
Barium	6.1		0.61	0.46	0.00	0.0031	0.0015	0.0033	0.0033	0.0029	0.0027	0.0038
Beryllium	0.001					0.00	0.54	0.37	0.49	0.65	0.55	690
Boron									0.00068	0.00014		
Cadmium	0.0569	0.0094	0.0036	0.0061								
Calcium	1117		4 00	0.0001				0.001	0.0034	0.0053	0.0012	0.016
Chromium	0620	03000	72.4	74.4	61.2	9.66	103	6.79	103	91.1	77.7	0.010
Cobalt	0.000	6050.0	0.039	0.52	0.031	0.056	0.014	0.0097	0.015	0.00	4.77	6.00
Conner	1000		0.031	0.0068	800.0			0.0012	0.0017	0.00064	0.014	0.045
	0.985	!	0.11	0.08	860.0	0.3	0.27	0.049	1700:0	0.00034	0.0018	0.001
	4.55		3.4	1.3	1.4	0.28	0.12	3	0.14	0.36	0.083	0.51
Lead	0.325	0.0345	9900.0	0.03	0.0054	0.0048	0.000	5.000	1./	-	0.44	1.9
Magnesium	40.8		44.3	33.3	29.9	15.7	0.0020	0.0035	0.016	0.0001	0.0016	0.015
Manganese	3.06		0.35	0.13	- FF O	17.7	7:75	32.5	49.8	-	36.1	33.3
Mercury				810000	*	41.0	0.086	0.12	0.23	-	0.067	0.04
Molybdenum			75.0	0.00010						-		
Nickel	3 56		0.07	0.42	0.7	0.3	0.5	0.29	+	•		2000
Potassium	0000		0.33	0.093	0.033	0.016	0.011	0.032	+	+	20:0	0700.0
Selenium	0.08		5.7	2	4.5	5.7	5.4	96	6.0.0	2.6	0.052	0.013
	0.0209		0.0036	0.0041	0.0041	0.0024	7	80000	÷	-	i	10.1
Silver	0.0131						-	0.00.0		+		0.0018
Sodium	130	•	203	901	123		179	000		+	0.00013 (0.00062
Inallium					0.0012			7007	411	989	29.3	29.8
<u>=</u>												
Vanadium	0.067		0.028	0.018	0.017		-	-	-			
Zinc	2.4		0.068	0.044	0.034	0.03	0.020	0.019	0.026	0.023	0.018	0.017
		•									-	0.075
PCB's and Chlorinated	:											
Pesticides (ug/L)				-			-					
4,4-1000							!					
			1.4	1			_			_	1	

TABLE 5-13 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER

Analytes RI (Nov 1994) (Jan 1995) (ane		Dhace I	DF										
(c)		RI	rnase II RI	Nov 1	2Qtr1Yr (Jan 1995)	3Qtr1Yr (Apr 1995)	4Qtr1Yr (Jul 1995)	1Qtr2Yr (Oct 95)			4Qtr2Yr	1Evnt3Yr	2Evnt3Yr
(c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	4,4'-DDE									(inay 20)		(Jan 97)	(Jul 97)
(c) 0.005 (c) 0.005 (c) 0.005 (c) 0.005 (d) 0.005 (d) 0.005 (e) 0.005 (e) 0.005 (f) 0.005	,4-DDT				+-								
re) rg/L) rg/L) rg/L) rg/L	Aldrin	i			980 0				0.075	1			
(e) (g/L) (in) (in) (in) (in) (in) (in) (in) (in	pha-BHC				0000				***************************************				
ie) igL) latin 2	pha-Chlordane												
ne) g(L) anne 2	Aroclor 1016												
ig/L) anne 2 5 same	Aroclor 1221												
e) g/L) ane 2 5 ane	oclor 1232												
re) rg(L) anne 2 5 sane	oclor 1242												
re) regilarity anne 2	oclor 1248										-		
re) rg/L.) anne 2	oclor 1254								The state of the s				
ne) 19. (1) 19. (2) 19. (3) 19. (4) 19. (4) 19. (5) 19. (7)	oclor 1260											050	
re) rg/L) rane												00	
re) rg/L) rane	a-bric					-					-		
re) rane rane	ta-BHC				The state of the s							-	
re) Tame Tame	ldrin												
e) g/L) nane nane	losulfan I												
re) nane nane	losulfan II				-								
re) rg/L) rane	osulfan sulfate							The second secon					
re) rane rane	ull												
rane rane	ma-BHC (Lindane)	<u>; </u>											
rane	ma-Chlordane												
g/L) nane nane	tachlor	:									i		
lane	tachlor epoxide												
nics (mg/L) loroethane ethane loroethane	hoxychlor												
lics (mg/L) loroethane ethane loroethane	aphene												
		:											
	All O Comments	:										-	
	tille Ofganics (mg/L)			!							-		
	, z-1 etrachloroethane	:											
-1 Trichloroethane	- Frichloroethane	€ .	5		of the same of the								
- ITICIIOroethane	z-1 etrachloroethane			-									
	- I richioroethane		7			:				+			

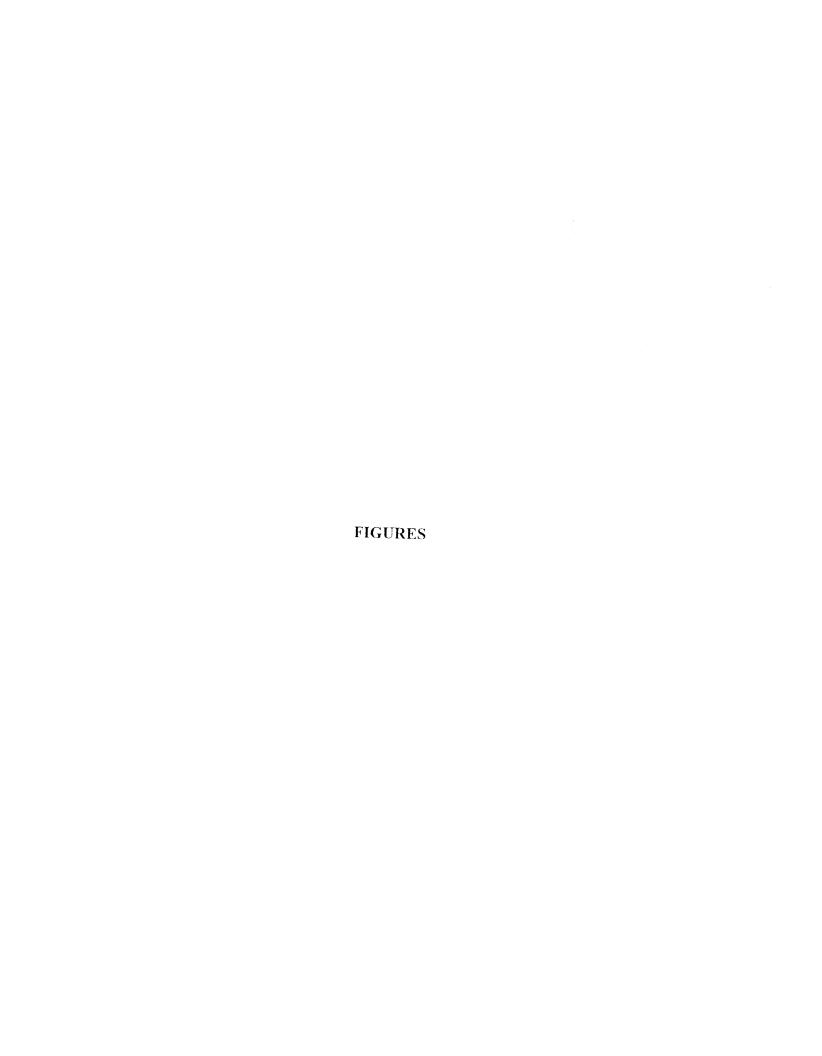
TABLE 5-13 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER

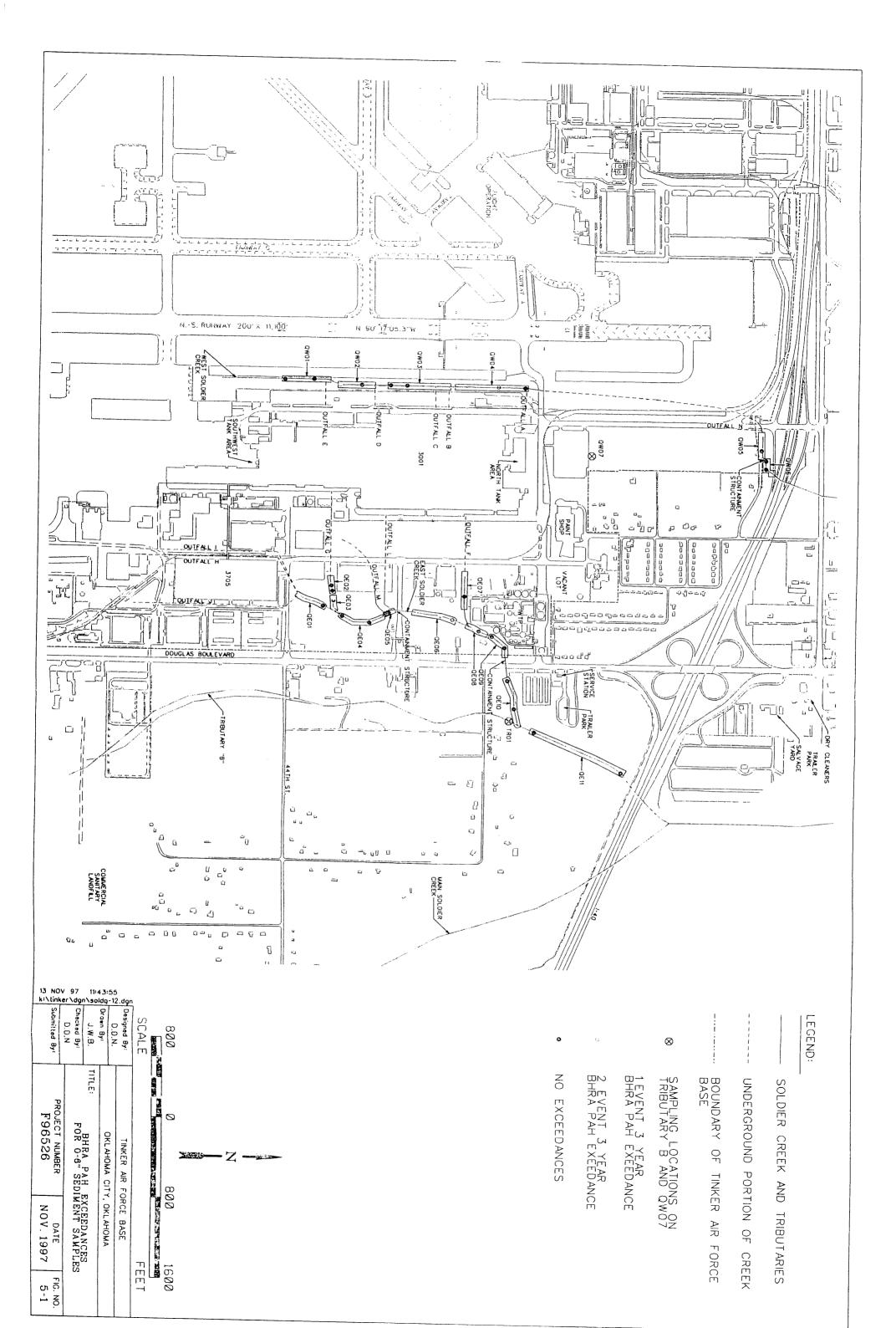
2Evnt3Yr	(Jul 97)		12			4
11			0.012			0.0014
JL	(Jan 97)	0.0062	0.0072 0.0025 0.0027	0.0016	0.0036	0.0018
	(Aug 90)	2.7	24	2.6		
3Qtr2Yr			12	2.5	0.1	2.3
2Qtr2Yr (Mar 96)			4.4	4		2.3
1Qtr2Yr (Oct 95)		5.4	26	4.0	2.4	150
4Qtr1Yr (Jul 1995)			12	8.		5.1
3Qtr1Yr (Apr 1995)			8.4	2.6		2.8
2Qtr1Yr (Jan 1995)			4.6		∞. ∞.	150
1Qtr1Yr (Nov 1994)		2.8	=	6.1		
Phase I Phase II			60	0.9	6	620
Phase I RI			5	9 7	9	-1
Analytes	1,1-Dichloroethane 1,1-Dichloroethene 2,2,3-Trichloropropane 2,2-Dichloroethane	2-Butanone (MEK) 2-Chlorethyl vinyl ether 2-Hexanone	4-Methyl-2-pentanone (MIBK) Acetone Acrolein Acrylonitrile Benzene	Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene	Chloroethane Chloroform Chloromethane cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane	Ethyl methacrylate Ethylbenzene Iodomethane Methylene chloride

TABLE 5-13 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER

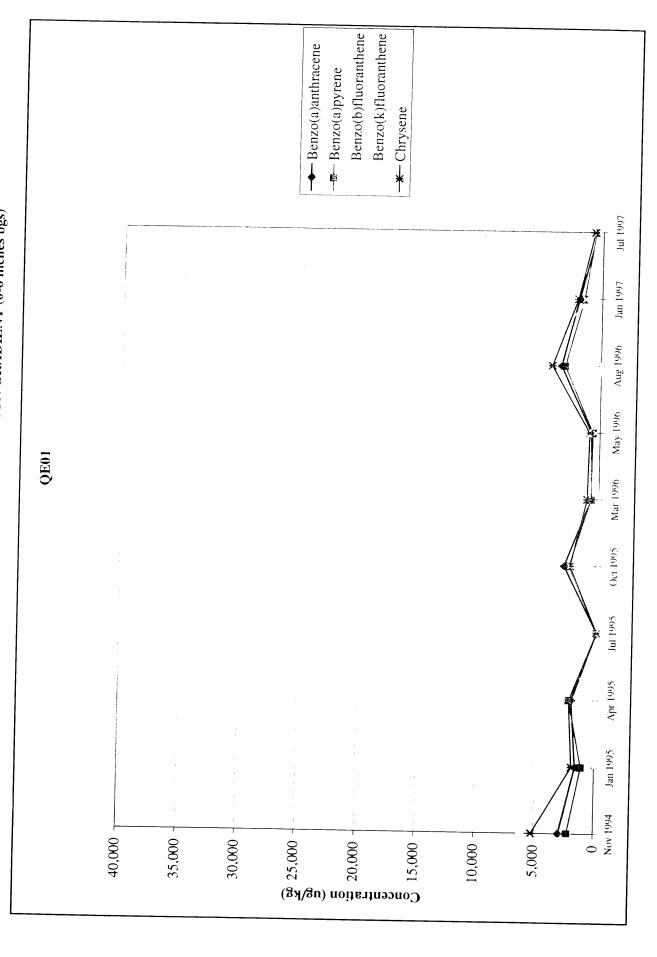
Analytes	Phase I	=	1Qtr1Yr		3Qtr1Yr	4Qtr1Yr	1Qtr2Yr	20tr2Yr 30tr2Yr		40tr2Vr	1 Funtav.	1543V.
Chirana	₹	E	(Nov 1994)	(Jan 1995)	(Apr 1995)	(Jul 1995)	(Oct 95)	(Mar 96) (May 96)			(Jan 97)	Jul 97)
Tetrachloroethene	,	7	-								0.0034	
Tolliene	∩ :-	0 4	-	7.6	2.1				1.5			
trans-12-Dichloroethene	-	<u> </u>		4.1					3.6			
trans-13-Dichloronronene												
trans-1,4-Dichloro-2-butene												
Trichlorethene	:		1 2		71					-		
Trichlorofluoromethane	:			<u>-</u>	0.1		and the second s	9.4	13			
Vinyl acetate												
Vinyl chloride												
(Xylenes (total)		2										
Semivolatile Organics (mg/L)		The second secon										
1,2,4,5-Tetrachloro-benzene		diameter of the state of the st										
1,2,4-Trichlorobenzene												
1,2-Dichlorobenzene	• • • • • • • • • • • • • • • • • • •											
1,3-Dichlorobenzene	!		-				1.,			0.7		į
1,4-Dichlorobenzene					746							
I-Chloronaphthalene												
1-Naphthylamine												
2,3,4,6-Tetrachlorophenol												
2,4,5-Trichlorophenol												
2,4,6-Trichlorophenol										700		
2,4-Dichlorophenol										0.90		
2,4-Dimethylphenol												
2,4-Dinitrophenol												
2,4-Dinitrotoluene	:											
2,6-Dichlorophenol												
2,6-Dinitrotoluene	!									2.8		
2-Chloronaphthalene	•											
2-Chlorophenol												
	-				_	1				4.		

TABLE 5-13 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER

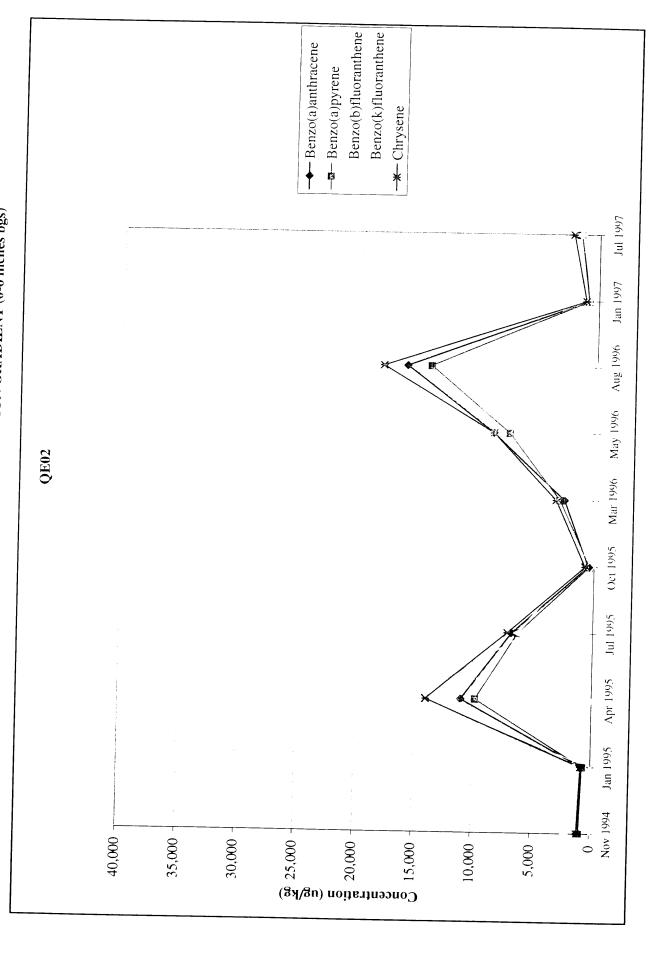

Analytes	Phase RI	Phase I Phase II RI	1Qtr1Yr (Nov 1994)	2Qtr1Yr (Jan 1995)	3Qtr1Yr (Apr 1995)	4Qtr1Yr (Jul 1995)	1Qtr2Yr	2Qtr2Yr	3Qtr2Yr	4Qtr2Yr	1Evnt3Yr	2Evnt3Yr
2-Methylnaphthalene						(6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(67,130)	(Mar 90)	(iviay 96)	(Aug 96)	(Jan 97)	(Jul 97)
2-Methylphenol												
2-Naphthylamine								-				
2-Nitrophenol	:							1		:		
2-Picoline												
3,3'-Dichlorobenzidine												
3-Methylcholanthrene	:											
3-Nitroaniline												i :
3/4-Methylphenol					1 3		, C 1					
4,6-Dinitro-2-methylphenol							7.					
4-Aminobiphenyl												
4-Bromophenyl phenyl ether									744 444 111111			
[4-Chloro-3-methylphenol												
4-Chloroaniline												
4-Chlorophenyl phenyl ether												
4-Nitroaniline												
4-Nitrophenol				1.7	2	1.7		1 ,				
7,12-Dimethylbenz(a)-anthracene						!		C.1				
a,a-Dimethylphenethyl-amine			1 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Acenaphthene												
Acenaphthylene												
Acetophenone			!									
Aniline	:											
Anthracene			1					.				
Azobenzene			1									
Benzidine	•											
Benzo(a)anthracene								7: -				
Benzo(a)pyrene	•											
Benzo(b)fluoranthene						:						
Benzo(g,h,i)perylene	9	-										
Benzo(k)fluoranthene						:					:	
				· -	-			· ·				

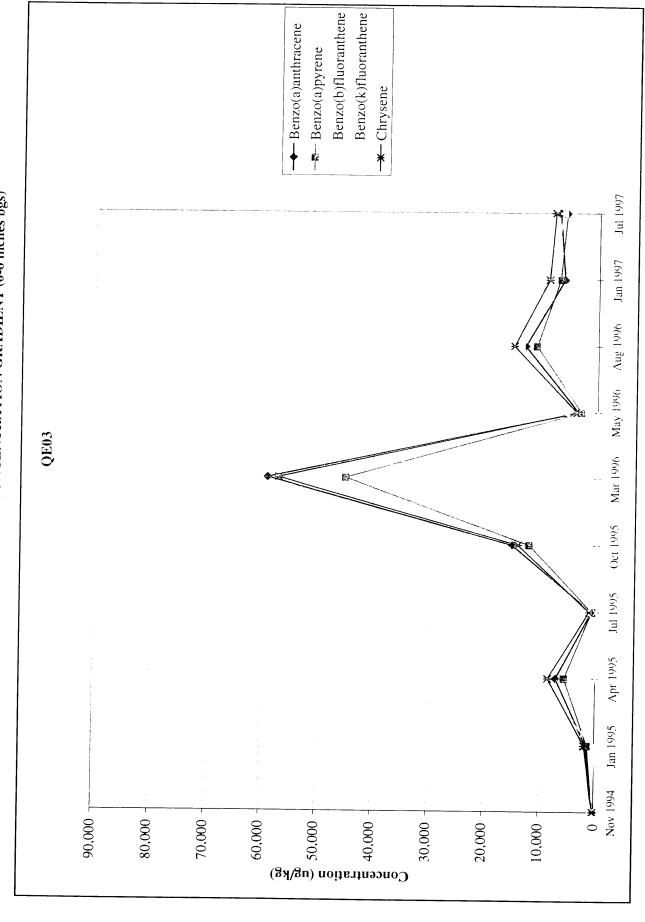

TABLE 5-13 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER

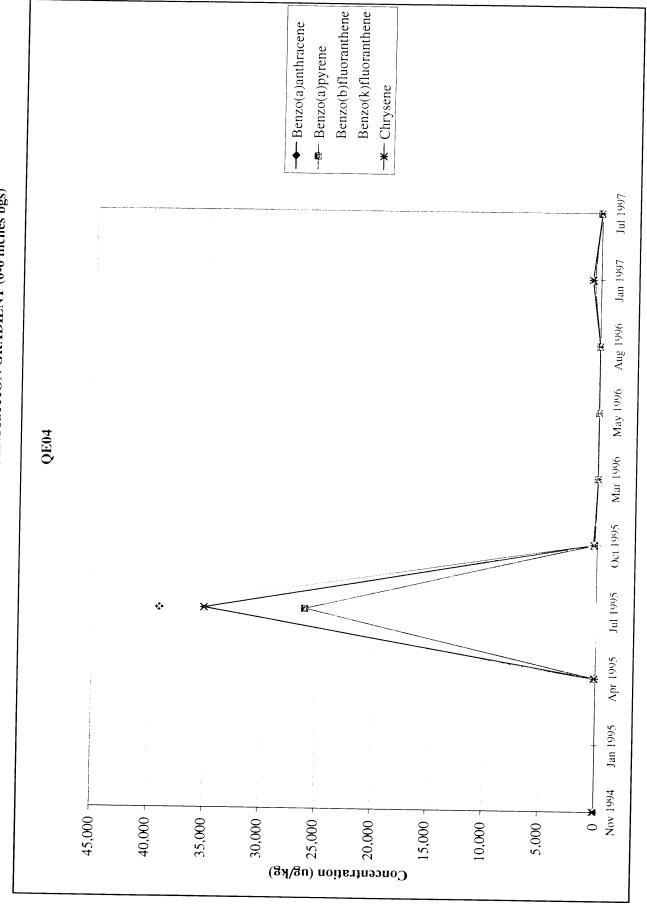
Analytes	Phase I RI	Phase II RI	1Qtr1Yr (Nov 1994)	Yr 2Qtr1Yr 94) (Jan 1995)	3Qtr1Yr (Apr 1995)	4Qtr1Yr (Jul 1995)	1Qtr2Yr (Oct 95)	2Qtr2Yr (Mar 96)	3Qtr2Yr (May 96)	4Qtr2Yr (Aug 96)	(Lan 97)	2Evnt3Yr
Benzoic acid	0.4				9.6	3.0	71		,		() ()	(17 Im 6)
Benzyl alcohol				1.7	- 2		0.1	7:	7	5.1		
bis(2-Chloroethoxy)methane											1	
bis(2-Chloroethy1)ether										-		
bis(2-Chloroisopropy1)ether											- 	
bis(2-Ethylhexyl)phthalate			_	3.6						1		
Butyl benzyl phthalate							1.0			5.1	0.013	0.14
Chrysene	5											
Di-n-butyl phthalate												
Di-n-octyl phthalate										4.1		
Dibenz(a,h,)anthracene												
Dibenz(a,)acridine										1		
Dibenzofuran												
Diethyl phthalate						- C 1				=		
Dimethyl phthalate						7.1		-				
Diphenylamine										1.3		
Ethyl methanesulfonate												
Fluoranthene	-			1 5								
Fluorene	•			J. 1				9.1		1.5		
Hexachlorobenzene												
Hexachlorobutadiene												
Hexachlorocyclopentadiene								1				
Hexachloroethane												
Indeno(1,2,3-cd)pyrene												
Isophorone		•										
Methyl methanesulfonate		•		1								
N-Nitroso-di-n-butylamine	•											
N-Nitroso-di-n-propylamine	•	1		:						i		
N-Nitrosodiphenylamine	•		•		:	:		:		1	:	
N-Nitrosopiperidine				:		:						
Naphthalene	•	•			:				:			
	-	-							1	4.		
											*	


TABLE 5-13 COMPARISON OF LONG-TERM MONITORING MAXIMUM ANALYTE CONCENTRATIONS WITH RI RESULTS IN SURFACE WATER

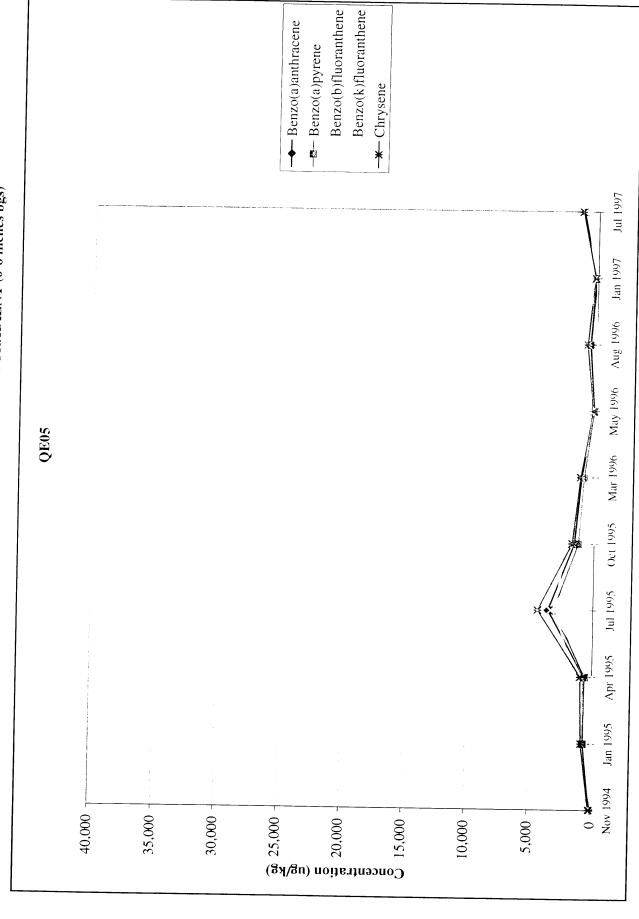
Analytes	Phase I RI	Phase II RI	nase II 1Qtr1Yr RI (Nov 1994)	2Qtr1Yr (Jan 1995)	Phase I Phase II 1Qtr1Yr 2Qtr1Yr 3Qtr1Yr 1Qtr2Yr 2Qtr2Yr 3Qtr2Yr 4Qtr2Yr 1Evnt3Yr 2Evnt3Yr RI (Nov 1994) (Jan 1995) (Apr 1995) (Jul 1995) (Oct 95) (Mar 96) (May 96) (Ang 96) (199 95)	4Qtr1Yr (Jul 1995)	1Qtr2Yr (Oct 95)	2Qtr2Yr (Mar 96)	3Qtr2Yr	4Qtr2Yr	lEvnt3Yr	2Evnt3Yr
Nitrobenzene								`		(0/9mi)	(Jan 77)	(/ 6 In c)
p-Dimethylaminoazobenzene												
Pentachlorobenzene												
Pentachloronitrobenzene												
Pentachlorophenol			-									
Phenacetin												İ
Phenanthrene				91								
Phenol				3.5	7.6							
Pronamide							7	7		4.		
Pyrene	-											
									_			



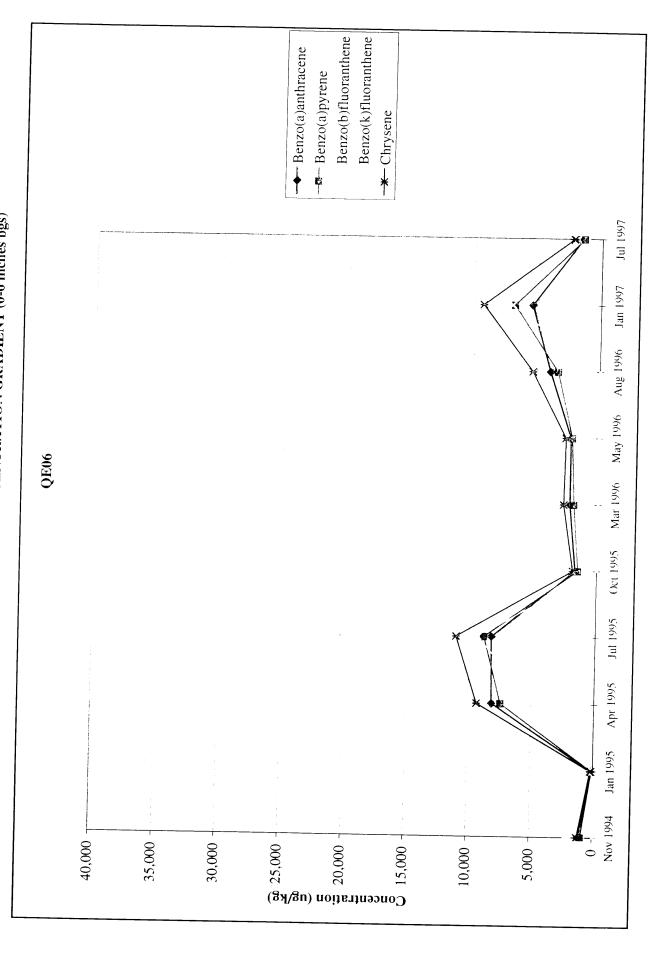

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGL 35-2a


TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGU. £ 5.2b

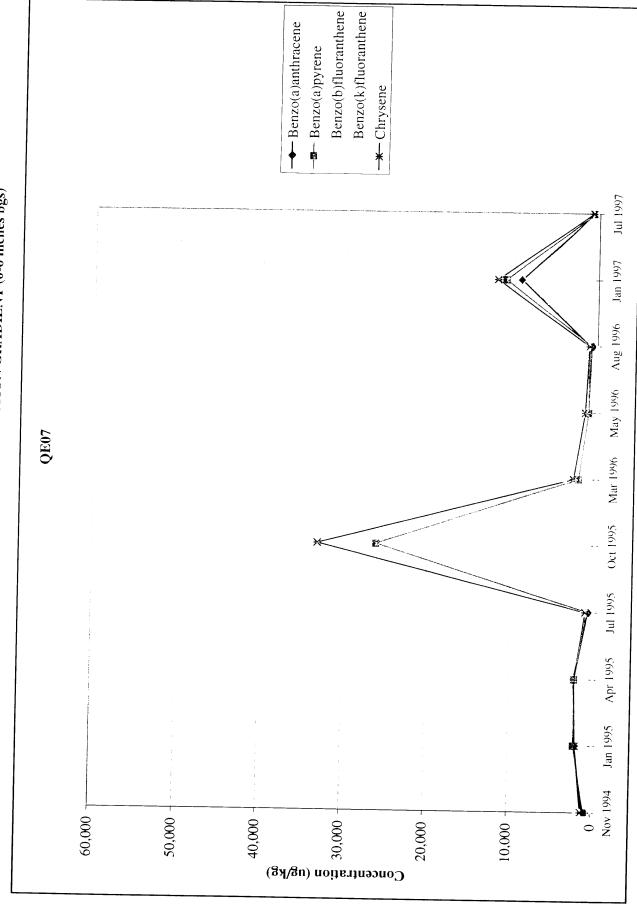
TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGU., £ 5-2c

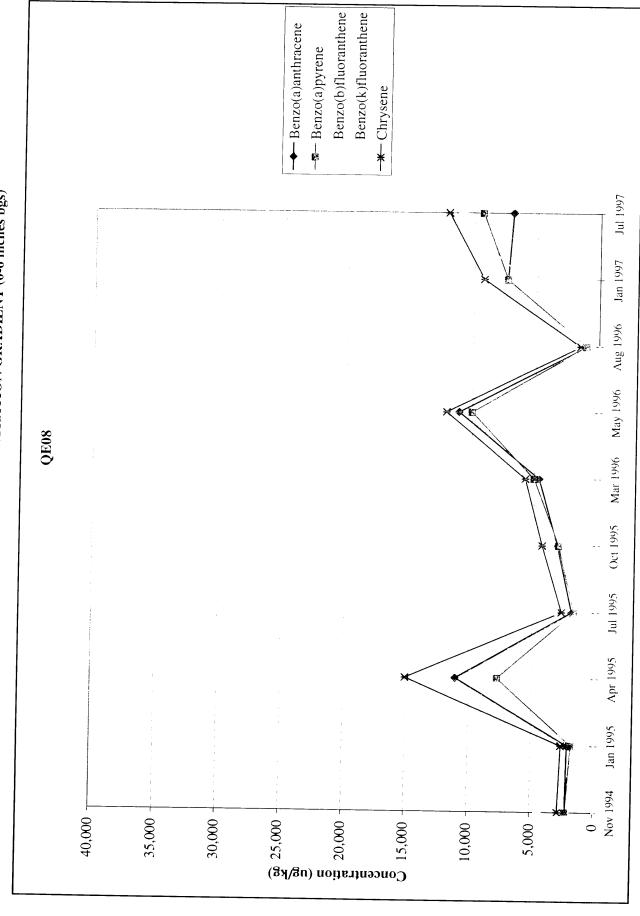


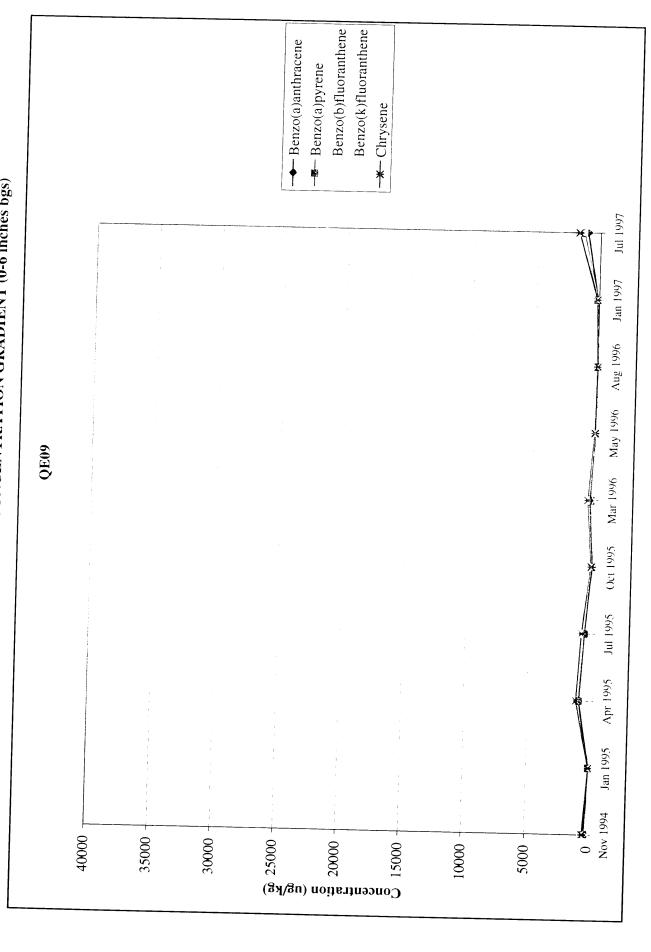
TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGU. _ 5-2d

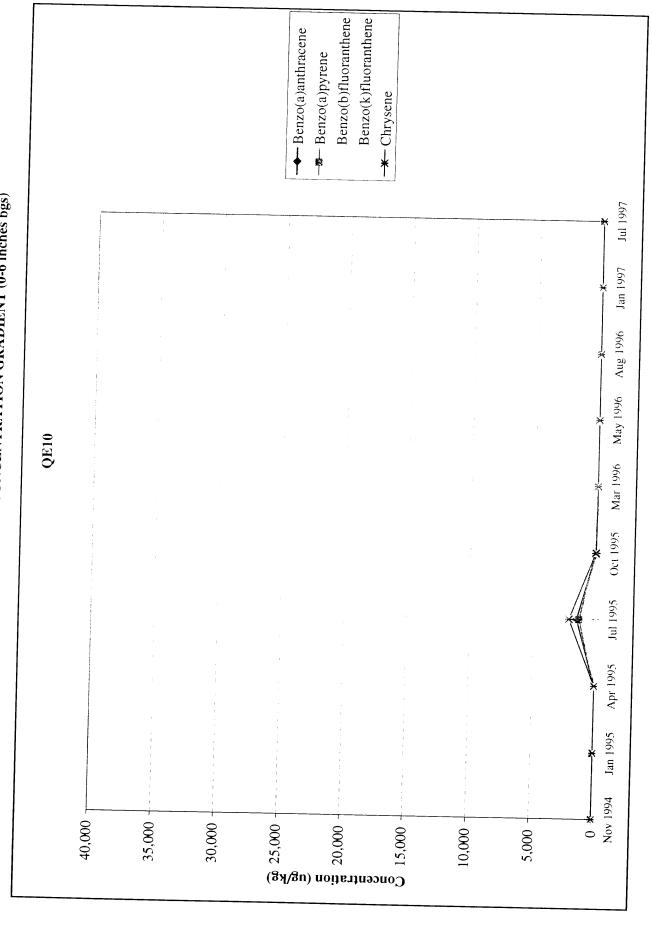


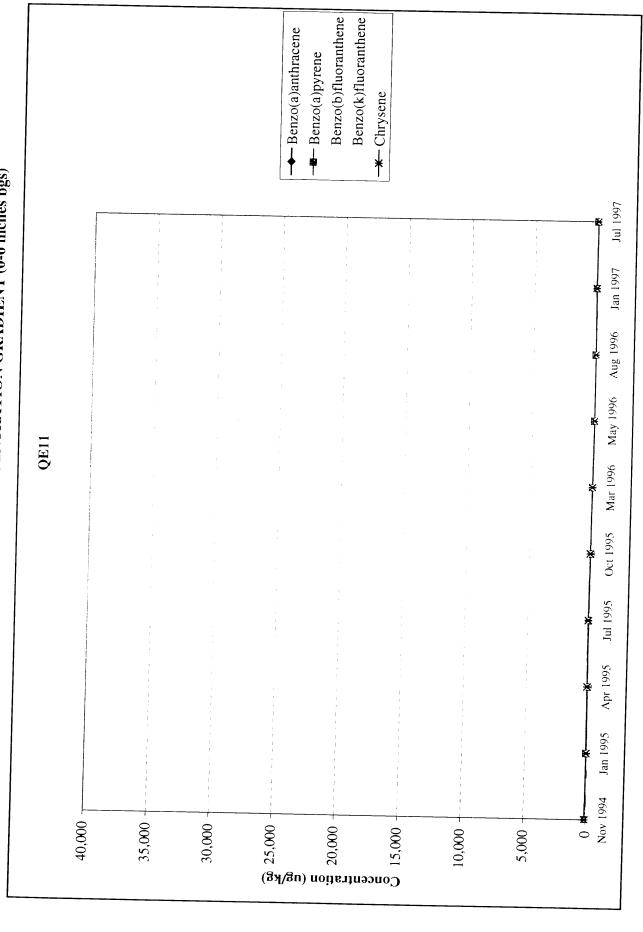
unker/d026crk/annual.rpt/5-2a-q Chart 5/5-2a-q Chart 5-8/9/99

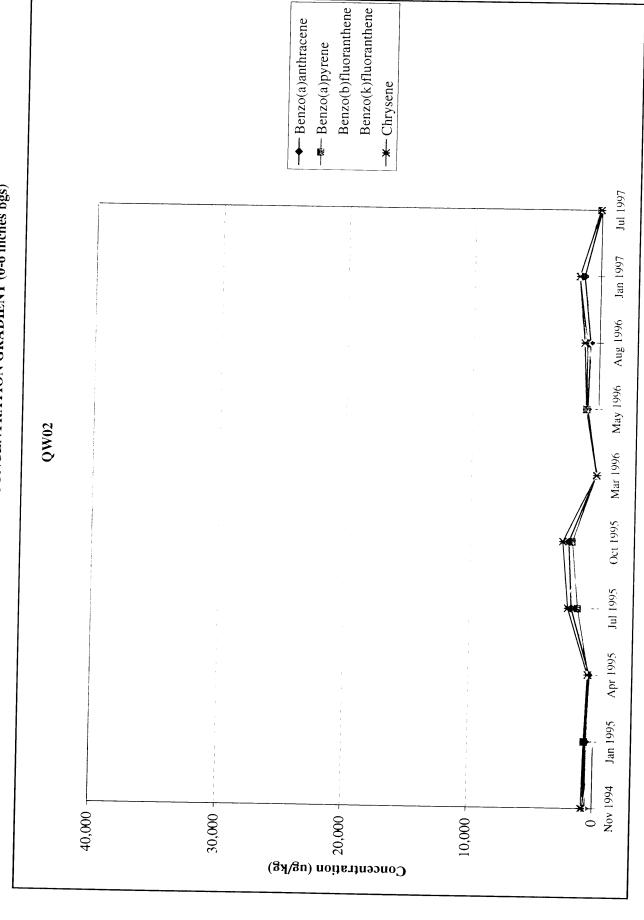

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIG. .. £ 5-2e

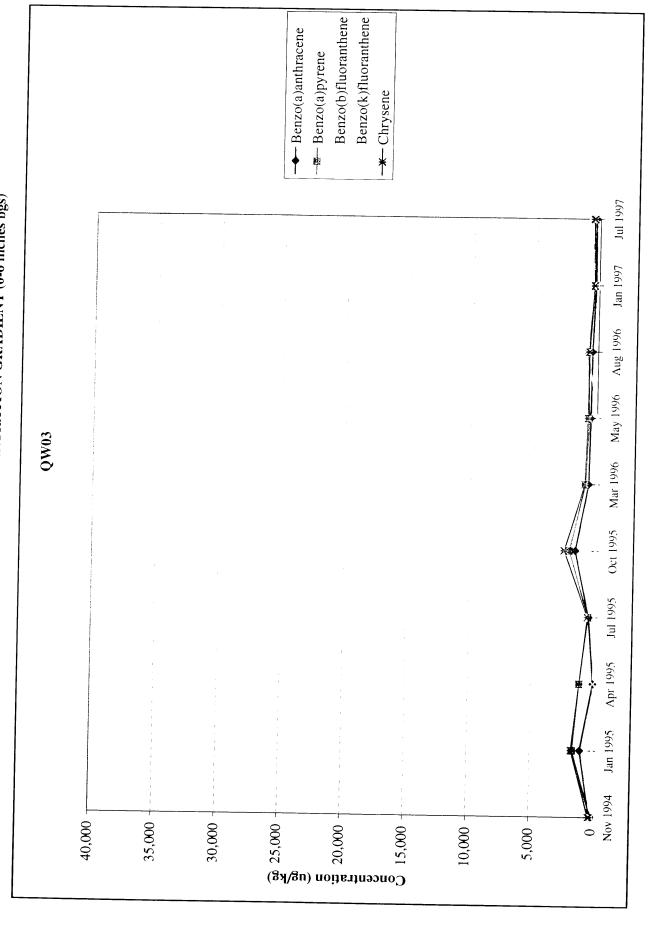

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIG. .E 5-2f

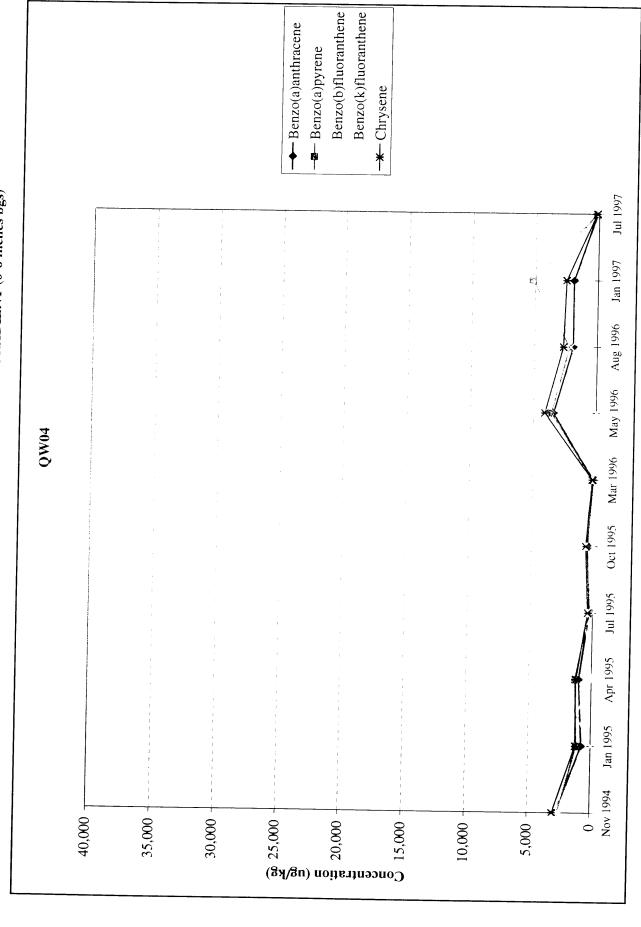

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGUNE 5-2g

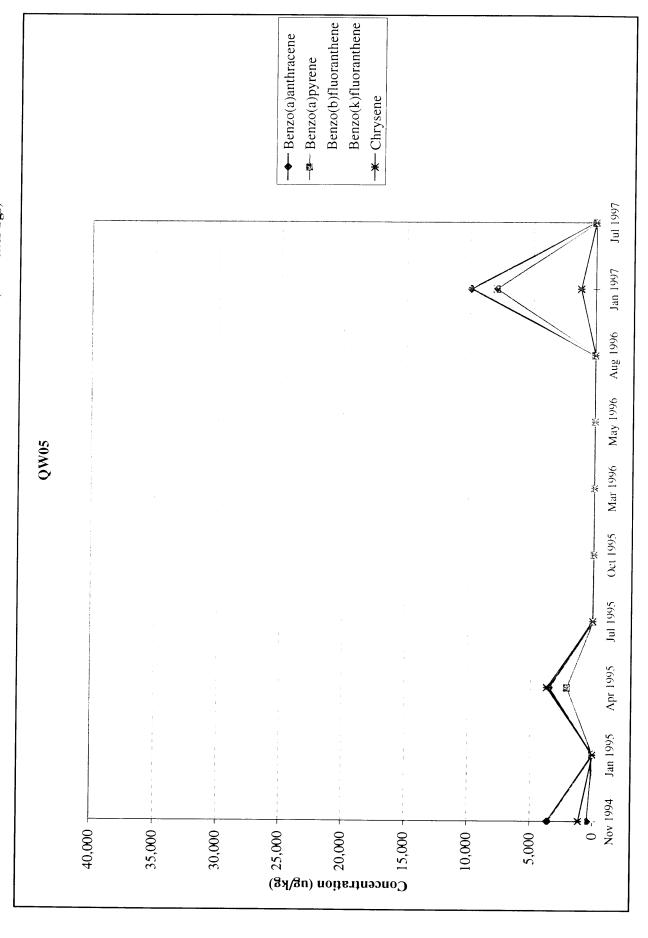

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIG. £ 5-2h

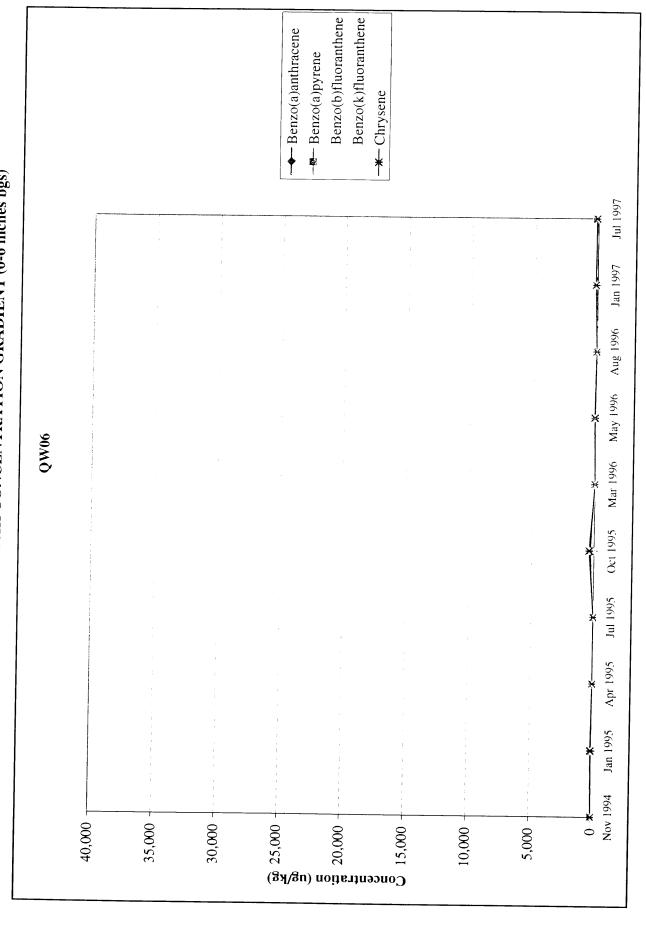

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-2i

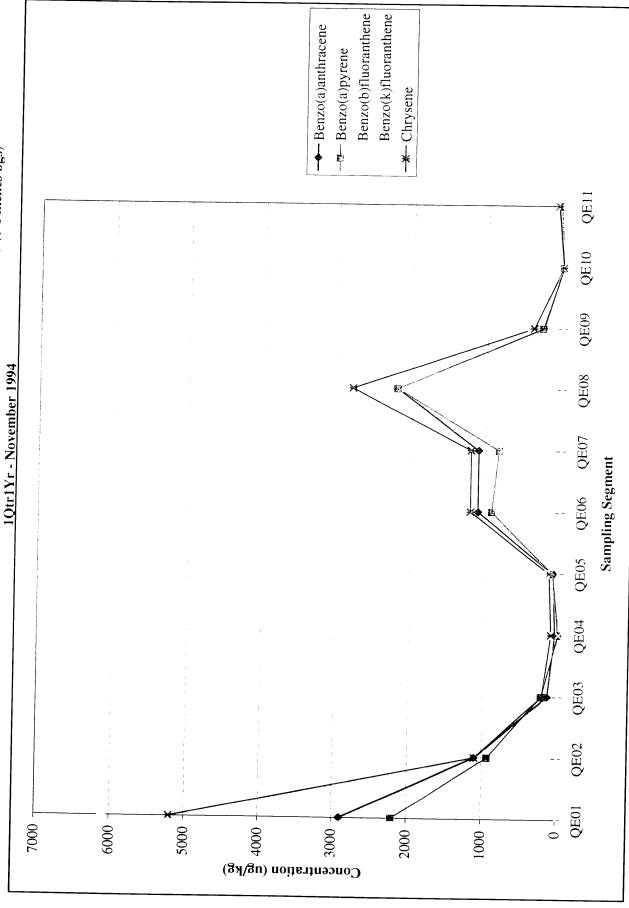

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIC . AE 5-2j

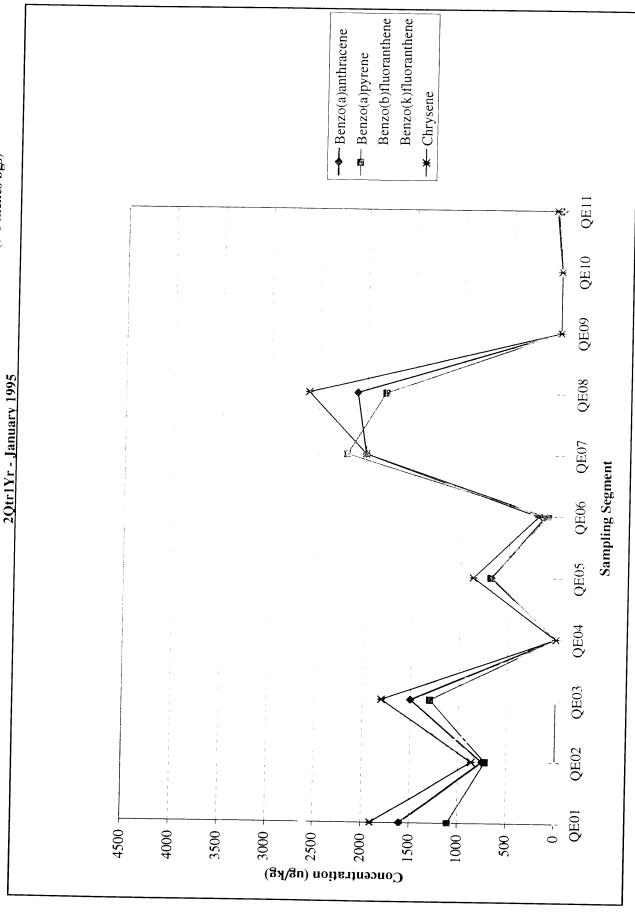

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-2k


TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIG . RE 5-21

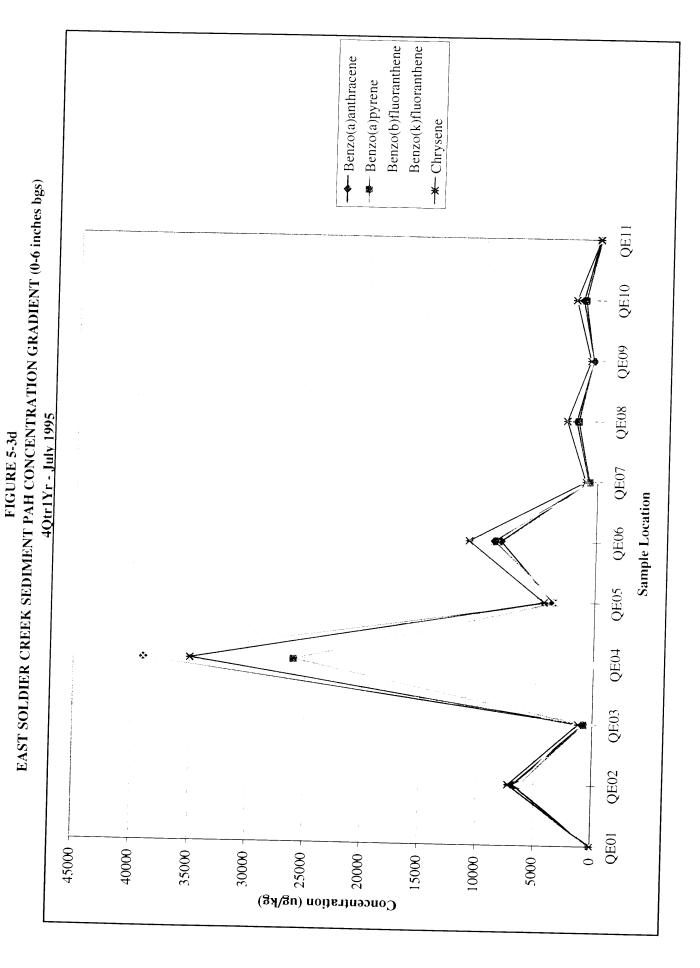

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-2m


TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-2n

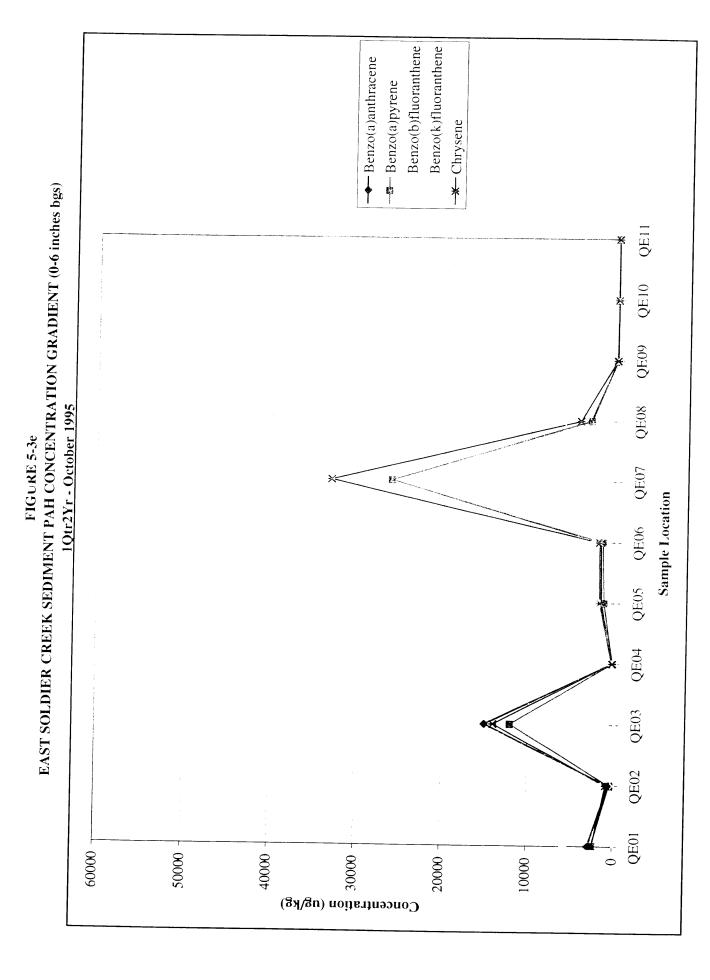

TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-20


TEMPORAL SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGUAE 5-2p

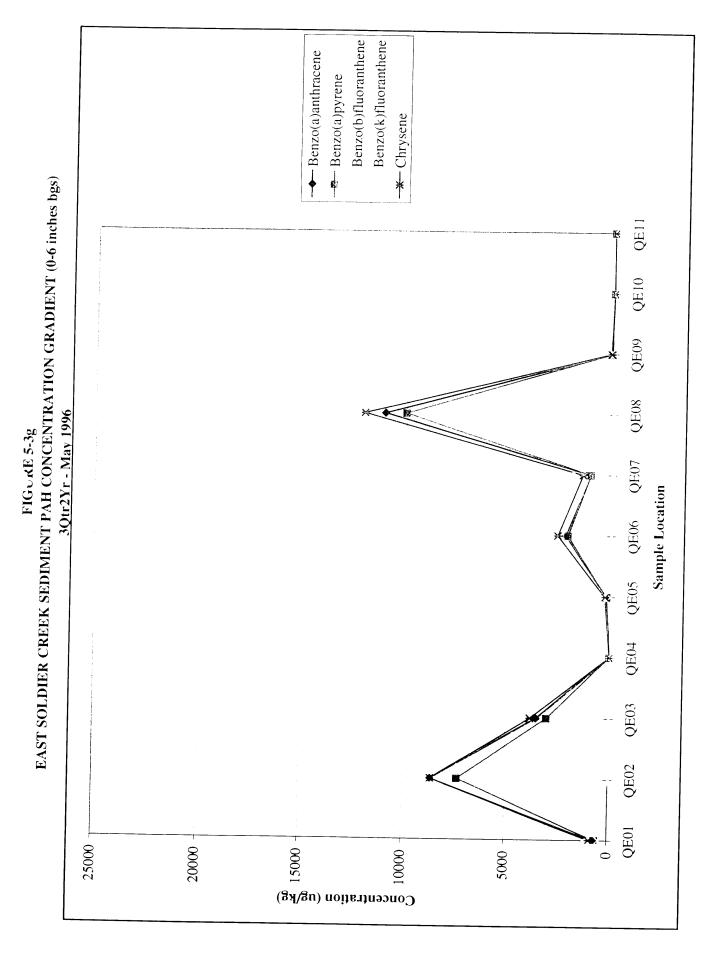
EAST SOLIDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGUAE 5-3a



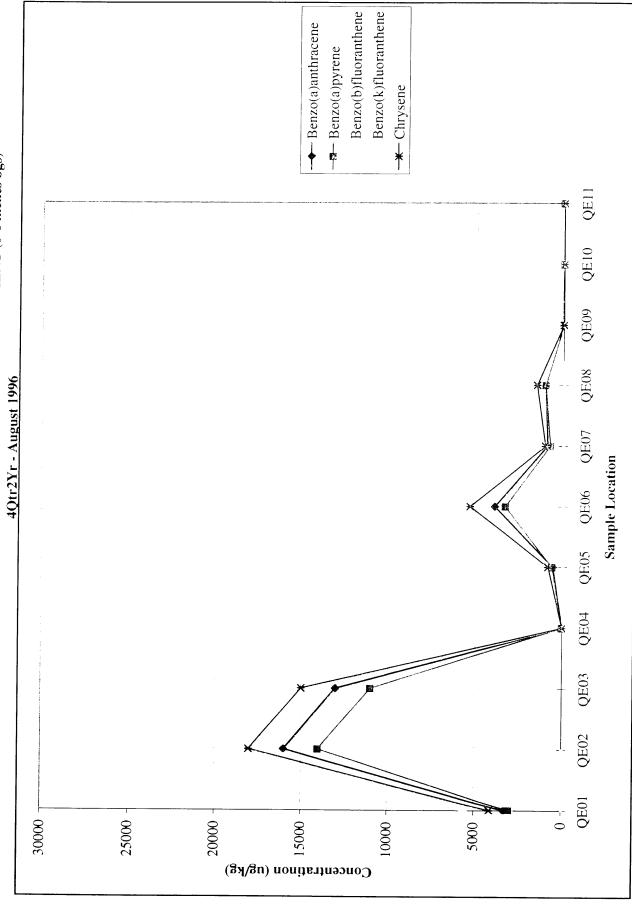
EAST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) TABLE 5-3b



tinker/d026crk/annual.rpt/apr 1995 Chart 1/apr 1995 Chart 1 8/9/99

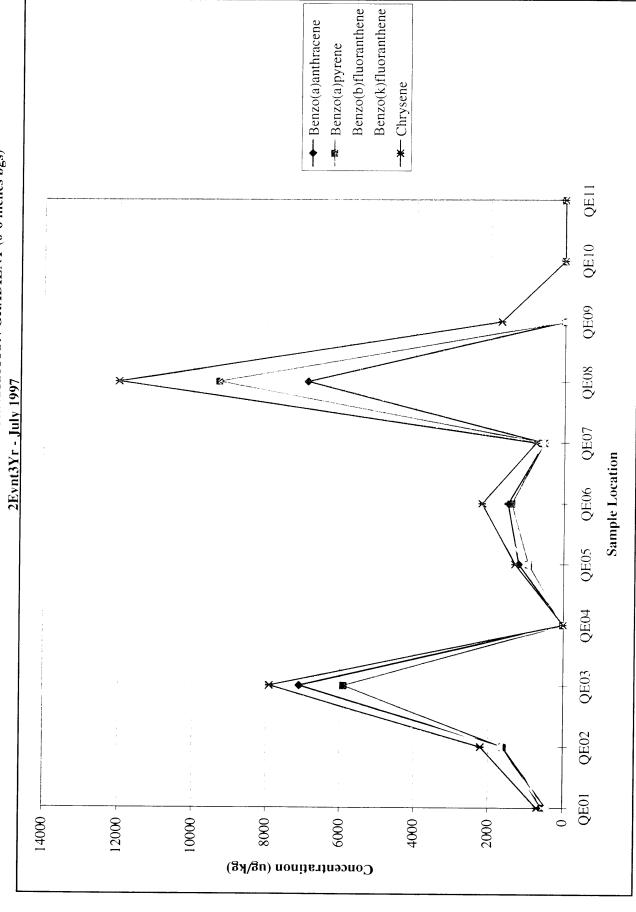

tinker/d026crk/annual.rpt/jul 1995 Chart 1/jul 1995 Chart 1 8/9/99

unker/d026crk/annual.rpt/oct 1995 Chart 1/oct 1995 Chart 1 8/9//9)


Benzo(b)fluoranthene Benzo(k)fluoranthene → Benzo(a)anthracene Benzo(a)pyrene -*- Chrysene EAST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) QEH QE10 QE09 QE08 20tr2Yr - March 1996 FIGURE 5-3f QE07 Sample Location QE06 QE05 QE04 QE03 QE02 QE01 *****e-Concentration (ug/kg) 00006 80000 00009 70000 30000 10000 20000

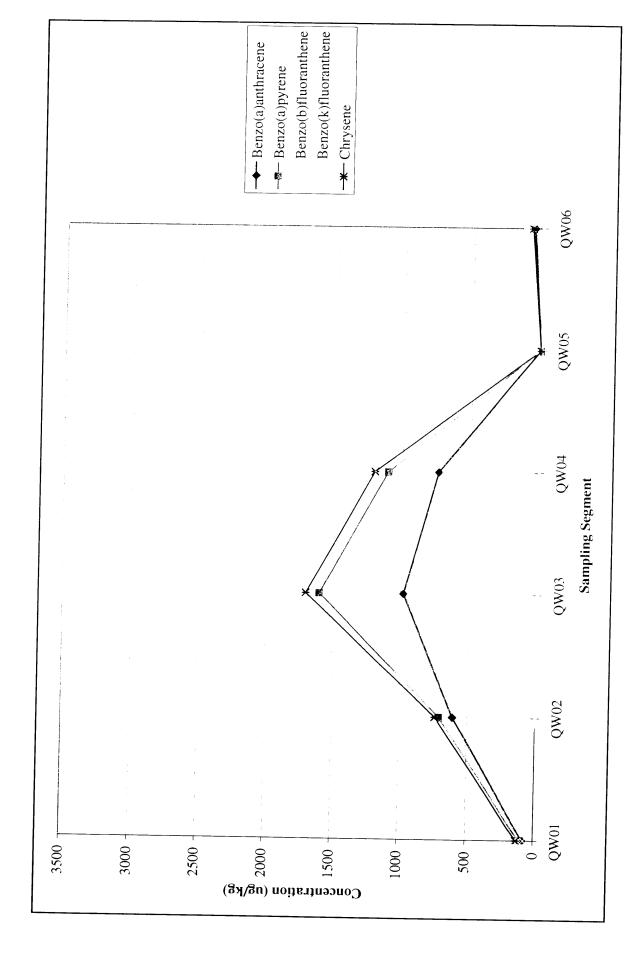
tinker/d026crk/annual.rpt/mar 1996 Chart 1/mar 1996 Chart 1 8/2/59

tinker/d026ctk/annual.rpt/may 1996 Chart I/may 1996 Chart 1 8/9/99


EAST SOLDIERCREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-3h

Benzo(b)fluoranthene Benzo(k)fluoranthene --- Benzo(a)anthracene -*- Chrysene EAST SOLDIERCREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) QE10 OE09QE081Evnt3Yr - January 1997 QE07 FIGURE 5-3i QE06 Sample Location QE05 QE04 QE03 QE02 QE01 12000 14000 10000 8000 0009 4000 2000 0 Concentratinon (ug/kg)

unker/d026crk/annual.rpt/jan 1997 ('hart 1/jan 1997 ('hart 1-8/9/99


EAST SOLDIERCREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-3j

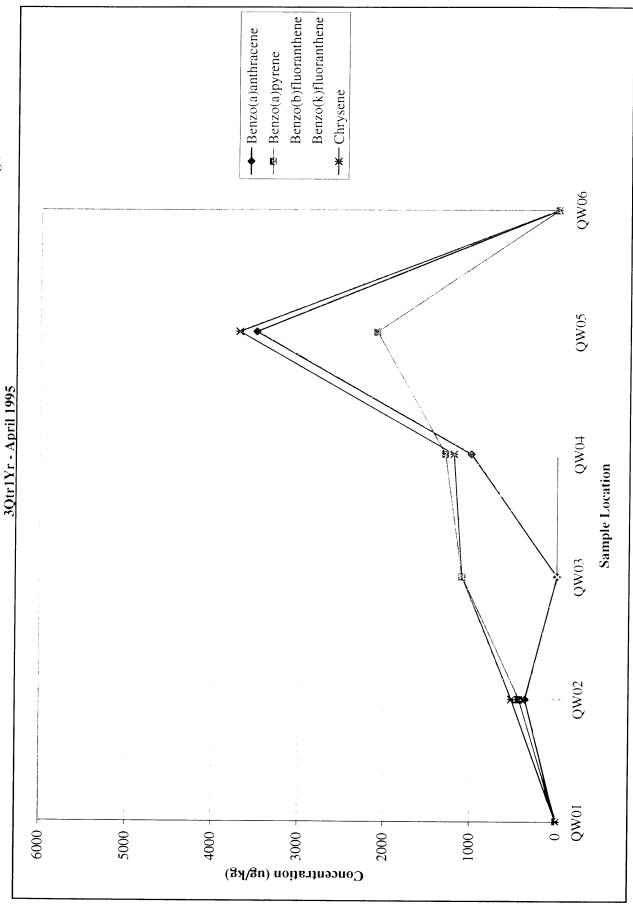
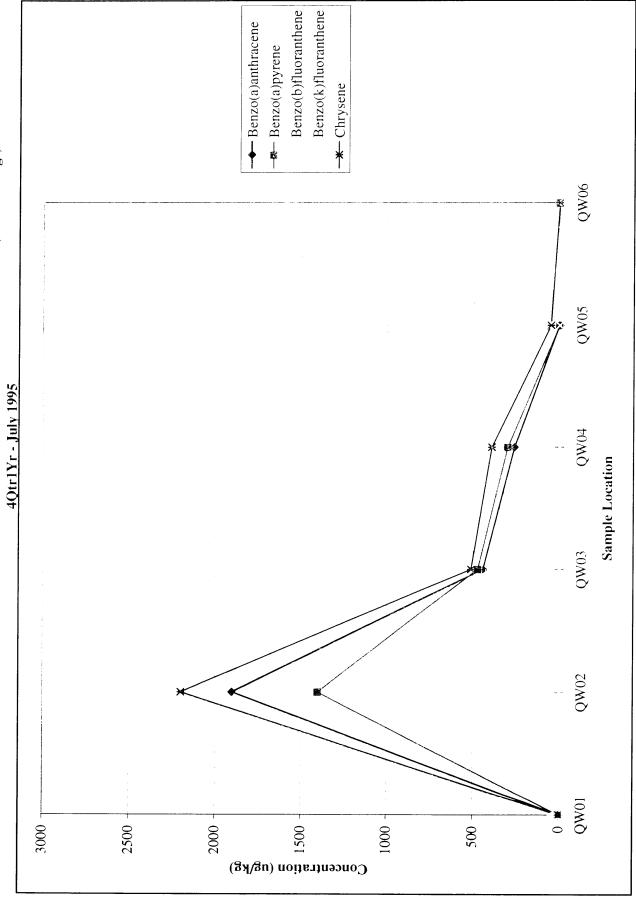
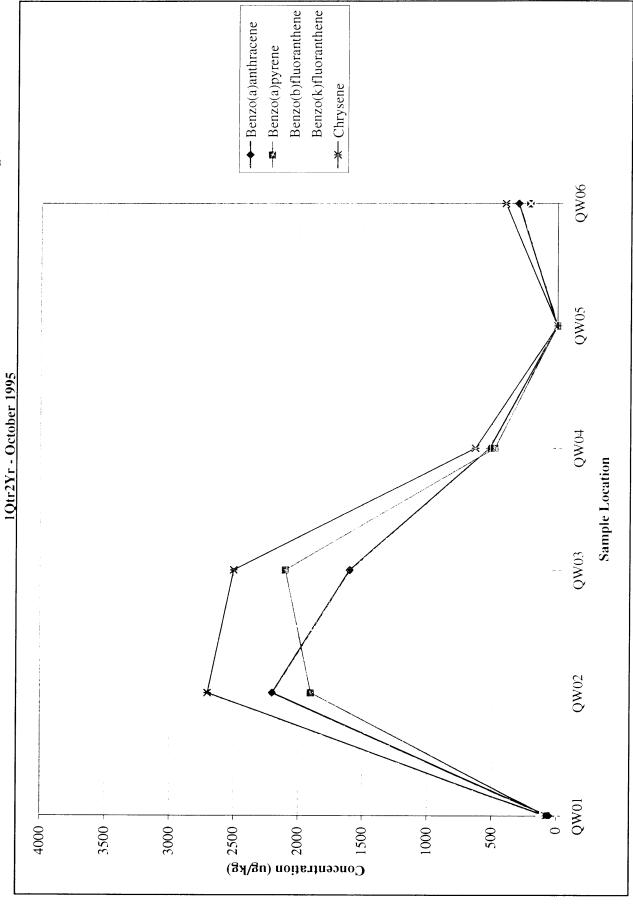
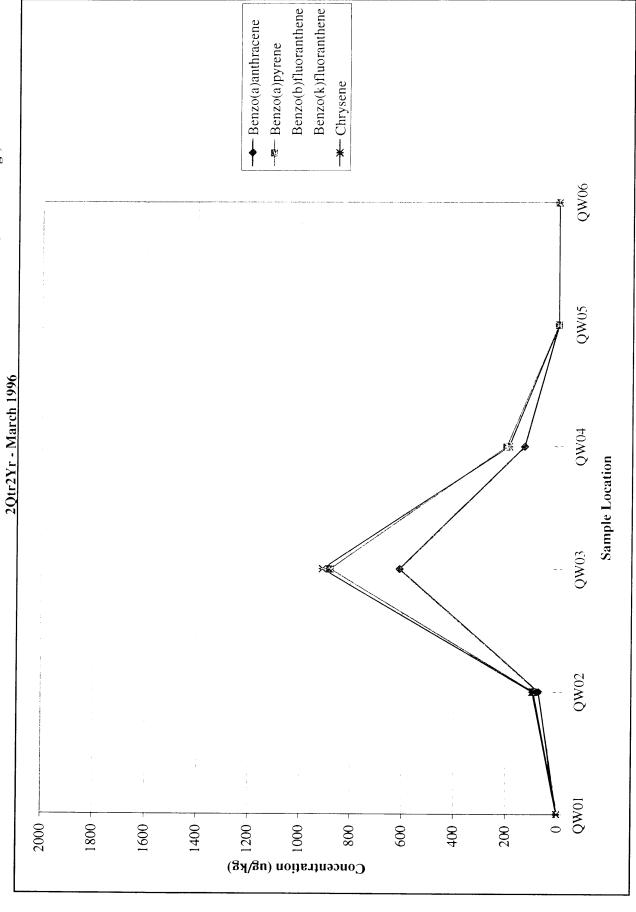
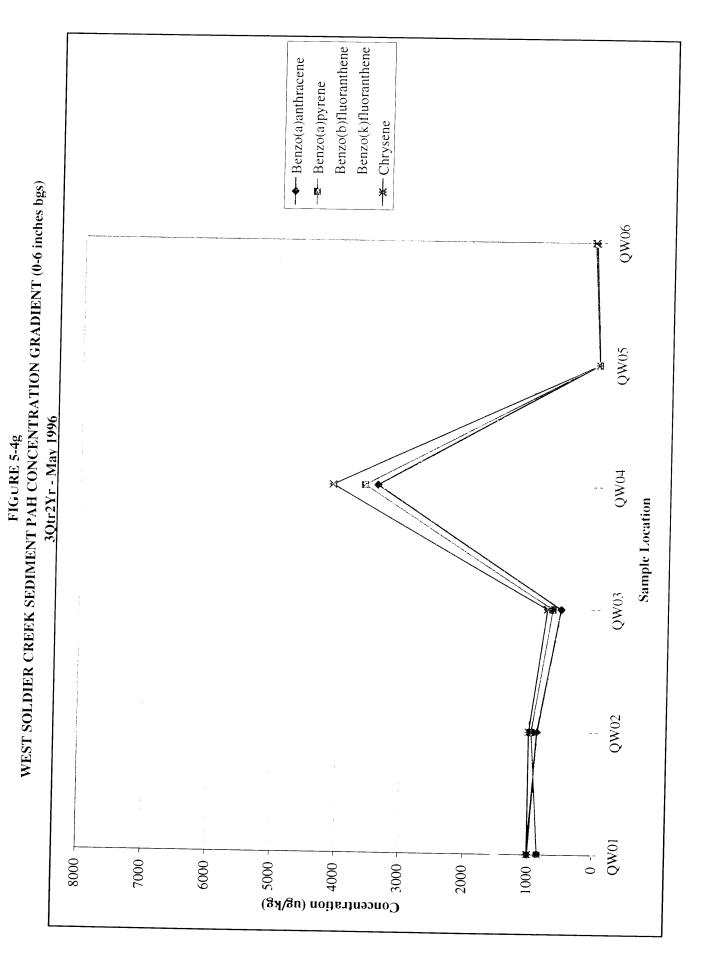

Benzo(b)fluoranthene Benzo(k)fluoranthene → Benzo(a)anthracene -a- Benzo(a)pyrene -*- Chrysene WEST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) 90MQ QW05 10tr1Yr - November 1994 QW04 Sample Location QW03 QW02 QW01 4000 3500 3000 2500 Concentration (ug/kg) 2500 1500 2000 1000 500

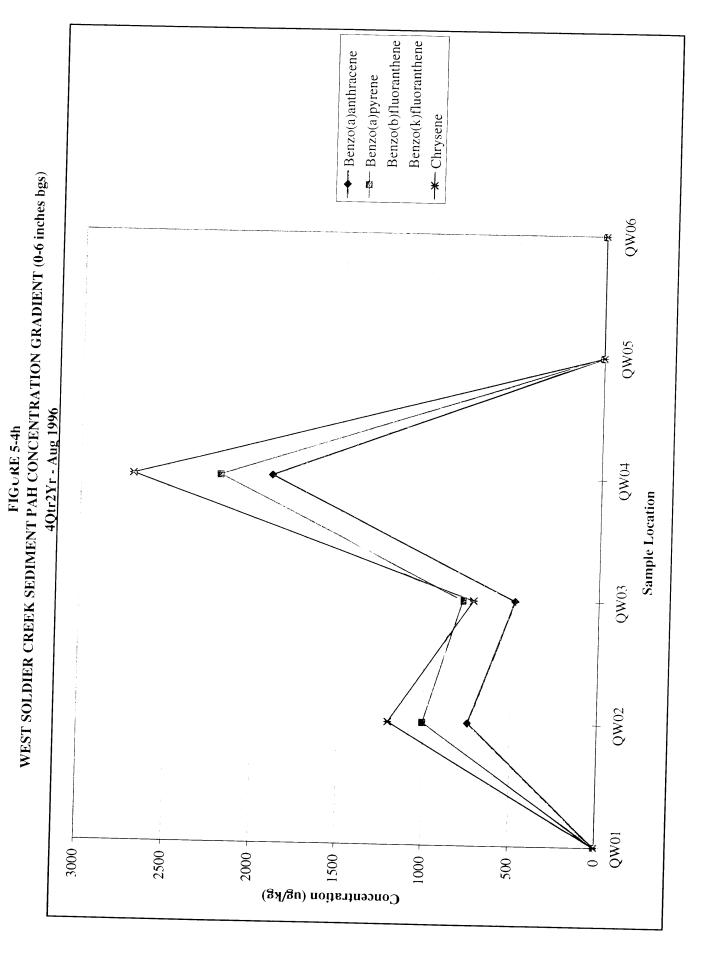
FIGURE 5-4a

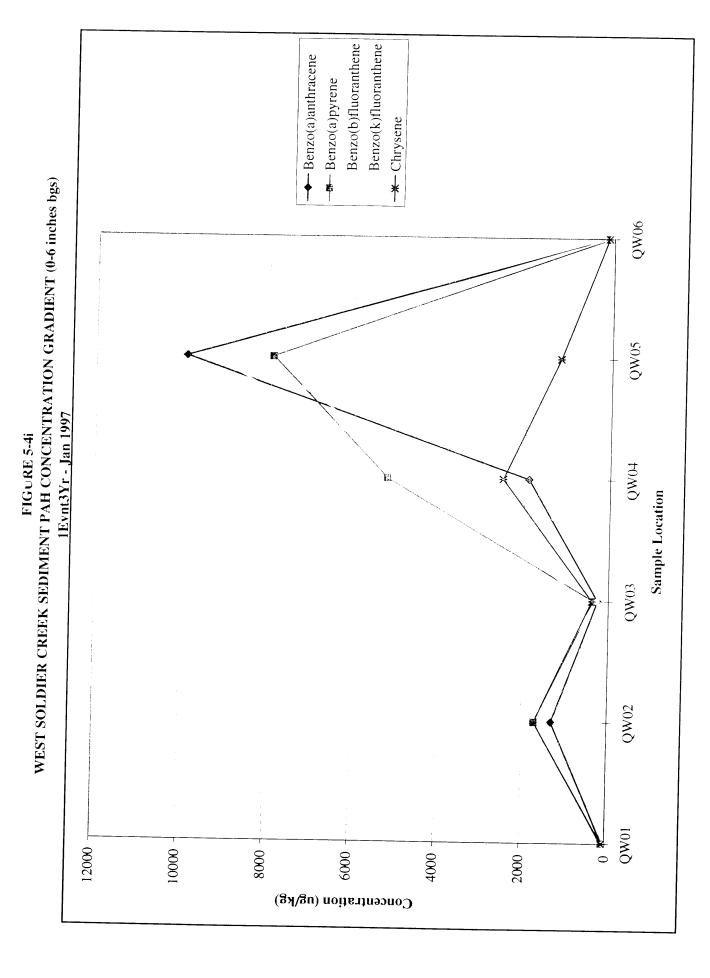

WEST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) 2Qtr1Yr - January 1995 FIGURE 5-4b

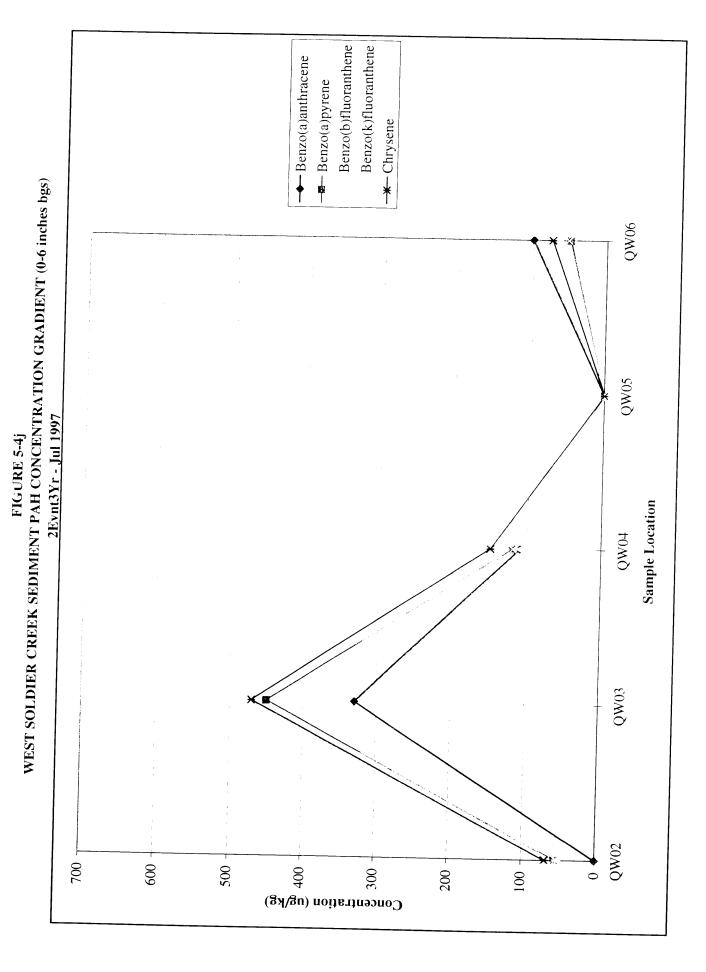

WEST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGUNE 5-4c


WEST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGUNE 5-4d




WEST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGUNE 5-4e


WEST SOLDIER CREEK SEDIMENT PAH CONCENTRATION GRADIENT (0-6 inches bgs) FIGURE 5-4f



tinker/d026crk/annual.rpt/aug 1996 C'hart 2/aug 1996 C'hart 2 8/9/99

unker/d026crk/annual.rpt/jan 1997 Chart 2/jan 1997 Chart 2 8/9/89

tinker/d026crk/annual.rpt/jul 1997 C'hart 2/jul 1997 C'hart 2 8/9/99

The following discussion presents a summary of screening criteria exceedances during the third year of monitoring. The PAHs benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and chrysene, exceeded the BHRA screening criteria in sediments during both monitoring events. Benzo(a)pyrene exceeded the HHRA 10⁻⁵ screening in one sample from 1Evnt3Yr monitoring event. Benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene exceeded the HHRA I 10⁻⁶ screening criteria. Based on the ROD, exceedance of these 10⁻⁵ and 10⁻⁶ screening criteria may potentially indicate a need to evaluate if the exposure is unacceptable.

Sediment analyte concentrations from the third year of monitoring did not exceed the 10^{-4} screening criteria set forth in the BHRA and the HHRA I. However, at location QW03 the non-carcinogenic screening criteria for aroclor 1254 was exceeded.

Due to the sampling methodology, care must be taken when drawing inferences on temporal trends of compound concentrations. However, several trends in the detected analytes from sediment samples appear to be present.

- The detected PAH concentrations in the sediment appear to follow the same trend (e.g., an increase in one PAH compound is associated with increases in the other detected PAH compounds).
- The sampling segment with the highest PAH concentrations in the sediment varies between monitoring events. This relationship suggests that multiple origins for PAHs could exist.
- Analyte concentrations are seen to decrease off-base as compared to on-base.

Surface water analyte concentrations from the third year of monitoring did not exceed any of the screening criteria set forth in the BHRA and the HHRA I.

The results of the HHRA III were compared to those presented in the HHRA I and HHRA II. The results of the comparison between the three HHRAs showed no dramatic changes. Although the off-base East Soldier Creek cancer risks show a steady decline from HHRA I to HHRA III.

Despite slight differences in approach between the HHRAs and the BHRA, all risk assessments have concluded that there are no unacceptable cancer risks or non-carcinogenic hazards associated with exposure to East or West Soldier Creeks for any on-base or off-base populations, under current of future stream use conditions. Thus no remedial action appears to be warranted based on risks to human health.

Black and Veatch Waste Science Technology (B&V). 1993a. Baseline Risk Assessment for Tinker Air Force Base, Soldier Creek. Report for Tinker Air Force Base, Oklahoma City, OK.

Black and Veatch Waste Science Technology (B&V). 1993b. Record of Decision for Tinker Air Force Base, Soldier Creek. Report for Tinker Air Force Base, Oklahoma City, OK.

Black and Veatch Waste Science Technology (B&V). 1993c. Final Remedial Investigation Report, Tinker Air Force Base, Soldier Creek, RI/FS. Report for Tinker Air Force Base, Oklahoma City, OK.

Brown and Root. 1996. Basewide Environmental Monitoring and Well Sampling and Water Level Measurements. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. January 1996.

Bureau of National Affairs (BNA). 1994. Oklahoma Groundwater Quality Standards. Bureau of National Affairs.

NUS Corporation (NUS). 1989. Final Storm Sewer Investigation for Soldier Creek. Report for Tinker Air Force Base, Oklahoma City, OK. October 1989.

Parsons Engineering Science (PES). 1995. Tinker Air Force Base Soldier Creek/Off-Base Groundwater Operable Unit Remedial Investigation. Internal Draft. Report for Tinker Air Force Base, Oklahoma City, OK. July 1995.

United States Department of Health and Human Services (USDHHS). 1990. Toxicological Profiles for Polycyclic Aromatic Hydrocarbons. Publication Number PB91-181537. December 1990.

United States Environmental Protection Agency (EPA). 1992. Test Methods for Evaluating Solid Waste. SW-846, Revision 1. July 1992.

United States Environmental Protection Agency (EPA). 1994a. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. February 1994 Revision.

United States Environmental Protection Agency (EPA). 1994b. Drinking Water Regulations and Health Advisories, EPA 822-R-94-001. U.S. EPA Office of Water. May 1994.

United States Geological Survey (USGS). 1984. Techniques of Water-Resources Investigations of the United States Geological Survey, Discharge Measurements at Gaging Stations. Book 3, Chapter A8.

Woodward-Clyde Federal Services (WCFS). 1994. Final Workplans for Long-Term Monitoring and Ecological Assessment of Soldier Creek Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. June 1994, revised December 1994.

Woodward-Clyde Federal Services (WCFS). 1996a. First Quarter Second Year Sampling Report, October 1995 Long-Term Monitoring of Soldier Creek, Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. January 1996.

Woodward-Clyde Federal Services (WCFS). 1996b. Second Quarter Second Year Sampling Report, March 1996 Long-Term Monitoring of Soldier Creek, Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. June 1996.

Woodward-Clyde Federal Services (WCFS). 1996c. Third Quarter Second Year Sampling Report, May 1996 Long-Term Monitoring of Soldier Creek, Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. September 1996.

Woodward-Clyde Federal Services (WCFS). 1996d. Fourth Quarter Second Year Sampling Report, August 1996 Long-Term Monitoring of Soldier Creek, Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. November 1996.

Woodward-Clyde Federal Services (WCFS). 1997a. Final Quarterly Monitoring Annual Report. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. April 1997.

Woodward-Clyde Federal Services (WCFS). 1997b. Draft Second Year Quarterly Monitoring Annual Report. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. June 1997.

Woodward-Clyde Federal Services (WCFS). 1997c. Final Ecological Assessment Report. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. April 1997.

Woodward-Clyde Federal Services (WCFS). 1997d. First Event Third Year Sampling Report, January 1997, Long-Term Monitoring of Soldier Creek, Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. April 1997.

Woodward-Clyde Federal Services (WCFS). 1997e. Second Event Third Year Sampling Report, July 1997, Long-Term Monitoring of Soldier Creek, Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. November 1997.

APPENDIX A

HUMAN HEALTH RISK ASSESSMENT

TABLE OF CONTENTS

Sect	<u>ion</u>		Page
EXE	CUTIV	'E SUMMARY	ES-1
1.0	INT	RODUCTION	1 - 1
	1.1 1.2 1.3 1.4	SITE DESCRIPTION SITE OPERATIONS AND REGULATORY HISTORY SITE PHYSICAL SETTING OBJECTIVES OF THE HUMAN HEALTH RISK ASSESSMENT	1-2 1-3 1-4 1-6
2.0	СНЕ	MICALS OF CONCERN	2-1
	2.1 2.2 2.3	CHEMICALS EVALUATED AS POTENTIAL COCS CHEMICALS EXCLUDED FROM THE RISK ASSESSMENT COC SELECTION PROCESS	2-1 2-2 2-2
		 2.3.1 Chemicals Not Detected 2.3.2 Chemicals Detected at Low Frequency 2.3.3 Essential Nutrients 2.3.4 Chemicals Present at Background Concentrations 	2-2 2-4 2-5 2-6
	2.4	CHEMICALS OF CONCERN	2-8
3.0	EXPO	DSURE ASSESSMENT	3-1
	3.1 3.2	IDENTIFICATION OF POTENTIAL RECEPTOR POPULATIONS EVALUATION OF POTENTIAL EXPOSURE PATHWAYS	3-1 3-2
		 3.2.1 Identification of Potential Sources of Chemical Release 3.2.2 Identification of Potential Exposure Points and Exposure Routes 	3-3
	3.3 3.4	RECEPTOR POPULATIONS NOT INCLUDED IN THE RISK ASSESSMENT EVALUATION OF POTENTIAL EXPOSURE PARAMETERS	3-4 3-5 3-6
		3.4.1.1 Life Span 3.4.1.2 Exposure Duration 3.4.1.3 Exposure Frequency 3.4.1.4 Exposure Time	3-7 3-7 3-7 3-8

TABLE OF CONTENTS

Sect	tion		Page
		 3.4.1.5 Sediment Ingestion Rate 3.4.1.6 Body Weight 3.4.1.7 Skin Surface Area 3.4.1.8 Dermal Sediment Adherence 3.4.1.9 Dermal Absorption Factor 3.4.1.10 Surface Water Ingestion Rate 3.4.1.11 Permeability Constant 	3-8 3-8 3-9 3-9 3-9 3-10
	3.5 3.6	ESTIMATION OF EXPOSURE POINT CONCENTRATION CALCULATION OF DAILY CHEMICAL INTAKES	3-10 3-12
4.0	TOX	CICITY ASSESSMENT	4-1
	4.1 4.2 4.3	TOXICITY ASSESSMENT OF NONCARCINOGENIC EFFECTS TOXICITY ASSESSMENT OF CARCINOGENIC EFFECTS SOURCES OF CRITICAL TOXICITY VALUES	4-1 4-3 4-5
5.0	CHA NON	RACTERIZATION OF POTENTIAL CANCER RISKS AND ICARCINOGENIC HAZARDS	5-1
	5.1 5.2	PROCEDURE FOR CALCULATION OF POTENTIAL CANCER RISKS AND NONCARCINOGENIC HAZARDS SUMMARY OF POTENTIAL NONCARCINOGENIC HEALTH HAZARD AND CANCER RISKS	5-1 5-2
6.0	REM	IEDIAL ACTION OBJECTIVES	6-1
7.0	UNC	ERTAINTY ANALYSIS	7-1
	7.1	DATA COLLECTION AND EVALUATION	7-1
		7.1.1 Data Collection	7-1
		7.1.1.1 Sampling 7.1.1.2 Analysis	7-2 7-2
		7.1.2 Data Evaluation	7-2
	7.2	EXPOSURE ASSESSMENT	7 3

TABLE OF CONTENTS

<u>Secti</u>	<u>on</u>			Page
		7.2.1 7.2.2	Exposure Point Concentrations Exposure Scenarios	7-3 7-4
	7.3	ТОХІСІТ	TY ASSESSMENT	7-5
		7.3.1 7.3.2	Uncertainties Associated with Critical Toxicity Values Uncertainties Associated with the Use of Surrogates	7-5 7-6
	7.4 7.5		IARACTERIZATION AL ACTION OBJECTIVES	7-6 7-6
8.0	TRE	NDS		8-1
	8.1 8.2 8.3 8.4	AREA 2: AREA 3:	ON-BASE WEST SOLDIER CREEK OFF-BASE WEST SOLDIER CREEK ON-BASE EAST SOLDIER CREEK OFF-BASE EAST SOLDIER CREEK	8-1 8-3 8-4 8-6
9.0	SUM	MARY ANI	D CONCLUSION	9-1
10.0	REFE	ERENCES		1()-1

LIST OF TABLES

Table 2-1	Sampling Locations in Each Stream Segment
Table 2-2	Chemicals Not Detected in On-Base West Soldier Creek Surface Water
Table 2-3	Chemicals Not Detected in Off-Base West Soldier Creek Surface Water
Table 2-4	Chemicals Not Detected in On-Base East Soldier Creek Surface Water
Table 2-5	Chemicals Not Detected in Off-Base East Soldier Creek Surface Water
Table 2-6	Chemicals Not Detected in On-Base West Soldier Creek Sediments
Table 2-7	Chemicals Not Detected in Off-Base West Soldier Creek Sediments
Table 2-8	Chemicals Not Detected in On-Base East Soldier Creek Sediments
Table 2-9	Chemicals Not Detected in Off-Base East Soldier Creek Sediments
Table 2-10	Chemicals Detected at Low Frequency and Concentration On-Base West Soldier Creek Sediments
Table 2-11	Chemicals Detected at Low Frequency and Concentration On-Base East Soldier Creek Sediments
Table 2-12	Essential Nutrients Excluded as Potential COCs On-Base West Soldier Creek Surface Water
Table 2-13	Essential Nutrients Excluded as Potential COCs Off-Base West Soldier Creek Surface Water
Table 2-14	Essential Nutrients Excluded as Potential COCs On-Base East Soldier Creek Surface Water
Table 2-15	Essential Nutrients Excluded as Potential COCs Off-Base East Soldier Creek Surface Water
Table 2-16	Essential Nutrients Excluded as Potential COCs On-Base West Soldier Creek Sediments
Table 2-17	Essential Nutrients Excluded as Potential COCs Off-Base West Soldier Creek Sediments
Table 2-18	Essential Nutrients Excluded as Potential COCs On-Base East Soldier Creek Sediments
Table 2-19	Essential Nutrients Excluded as Potential COCs Off-Base East Soldier Creek Sediments
Table 2-20	Chemicals Detected at Background Levels On-Base West Soldier Creek Surface Water

LIST OF TABLES

Table 2-21	Chemicals Detected at Background Levels in Off-Base West
T 11 2 22	Soldier Creek Surface Water
Table 2-22	Chemicals Detected at Background Levels On-Base East Soldier
T. 11 2 22	Creek Surface Water
Table 2-23	Chemicals Detected at Background Levels in Off-Base East
T 11 2 24	Soldier Creek Surface Water
Table 2-24	Chemicals Detected at Background Levels On-Base West Soldier Creek Sediments
Table 2-25	Chemicals Detected at Background Levels Off-Base West Soldier
14676 2 23	Creek Sediments
Table 2-26	Chemicals Detected at Background Levels On-Base East Soldier
	Creek Sediments
Table 2-27	Chemicals Detected at Background Levels Off-Base East Soldier Creek Sediments
Table 2-28	Chemicals of Concern On-Base West Soldier Creek Surface Water
Table 2-29	Chemicals of Concern Off-Base West Soldier Creek Surface Water
Table 2-30	Chemicals of Concern On-Base East Soldier Creek Surface Water
Table 2-31	Chemicals of Concern Off-Base East Soldier Creek Surface Water
Table 2-32	Chemicals of Concern On-Base West Soldier Creek Sediments
Table 2-33	Chemicals of Concern Off-Base West Soldier Creek Sediments
Table 2-34	Chemicals of Concern On-Base East Soldier Creek Sediments
Table 2-35	Chemicals of Concern Off-Base East Soldier Creek Sediments
Table 3-1	Exposure Parameters Dermal Contact with Sediments
Table 3-2	Exposure Parameters Ingestion of Sediments
Table 3-3	Exposure Parameters Dermal Contact with Surface Water
Table 3-4	Exposure Parameters Ingestion of Surface Water
Table 3-5	Exposure Point Concentrations On-Base West Soldier Creek
	Surface Water (Current and Future Scenarios)
Table 3-6	Exposure Point Concentrations Off-Base West Soldier Creek
	Surface Water (Current and Future Scenarios)
Table 3-7	Exposure Point Concentrations On-Base East Soldier Creek
	Surface Water (Current and Future Scenarios)
Table 3-8	Exposure Point Concentrations Off-Base East Soldier Creek
	Surface Water (Current and Future Scenarios)
Table 3-9	Exposure Point Concentrations On-Base West Soldier Creek
	Sediments (Current Scenario)
Table 3-10	Exposure Point Concentrations On-Base West Soldier Creek
	Sediments (Future Scenario)

LIST OF TABLES

Table 3-11	Exposure Point Concentrations Off-Base West Soldier Creek
	Sediments (Current and Future Scenarios)
Table 3-12	Exposure Point Concentrations On-Base East Soldier Creek
	Sediments (Current Scenario)
Table 3-13	Exposure Point Concentrations On-Base East Soldier Creek
	Sediments (Future Scenario)
Table 3-14	Exposure Point Concentrations Off-Base East Soldier Creek
	Sediments
Table 4-1	Critical Toxicity Values
Table 4-2	USEPA Weight-Of-Evidence Carcinogenic Classification of
	Chemicals
Table 5-1	Noncarcinogenic Health Hazards and Carcinogenic Risks
	Associated with Surface Water and Sediments in Soldier Creek
	(Current Scenario)
Table 5-2	Noncarcinogenic Health Hazards and Carcinogenic Risks
	Associated with Surface Water and Sediments in Soldier Creek
	(Future Scenario)
Table 6-1	Risk-based Cleanup Levels for Chemicals of Concern in Sediments
Table 6-2	Risk-based Indicators of Water Quality for Chemicals of Concern
	in Surface Water
Table 7-1	Summary of Uncertainties Associated with Risk Assessment for
	Soldier Creek
Table 8-1	Comparison of First Three Years Noncarcinogenic Health Hazards
	and Carcinogenic Risks Associated with Surface Water and
	Sediments in Soldier Creek (Current Base Worker Scenario)
Table 8-2	Comparison of First Three Years Noncarcinogenic Health Hazards
	and Carcinogenic Risks Associated with Surface Water and
	Sediments in Soldier Creek (Future Base Worker Scenario)
Table 8-3	Comparison of First Three Years Noncarcinogenic Health Hazards
	and Carcinogenic Risks Associated with Surface Water and
	Sediments in Soldier Creek (Current and Future Off-Base
	Residential Scenario)

LIST OF FIGURES

Figure 1-1	Soldier Creek Long-Term Monitoring And Ecological Assessment
	Site Vicinity
Figure 1-2	Soldier Creek Quarterly Monitoring Sampling Locations
Figure 3-1	Site Conceptual Exposure Model - East And West Soldier Creek
C	Tinker Air Force Base, Oklahoma City, Oklahoma

List Of Appendixes

Attachment A Risk Calculations

Evaluations of potential risks associated with Soldier Creek surface water and sediments at Tinker Air Force Base (AFB) located in Oklahoma City, Oklahoma, were previously performed by Black & Veatch (B&V) Waste Science Technology (B&V 1993) and Woodward-Clyde Federal Services (WCFS) (1996, 1997b). Soldier Creek sediments and surface water continue to be sampled as part of the long-term monitoring of Soldier Creek. The purpose of this risk assessment (RA) is to provide estimates on potential current and future risks based on current surface water and sediment contaminant concentrations, to compare the results with those of the two previous WCFS RAs to see if previous conclusions are still valid, to evaluate any potential trends associated with estimated risks, and to develop cleanup goals for stream sediments and surface water—that are protective of human populations.

This RA was performed using guidelines provided in the Risk Assessment Guidance for Superfund - Part A [United States Environmental Protection Agency (USEPA) 1989a] and Part B (USEPA 1991b). Exposure Factors Handbook (USEPA 1989b), Standard Default Exposure Factors (USEPA 1991a). Dermal Exposure Assessment: Principles and Applications (USEPA 1992a), and USEPA Supplemental Region IV Risk Assessment Guidance (USEPA 1991d). Environmental data obtained from surface water and sediment samples collected by WCFS in the semiannual sampling events of 1997 were used in this RA. In addition, the RA made use of recent USEPA databases, including the Integrated Risk Information System (IRIS: USEPA 1997a), USEPA Region III Risk-based Concentration Table (USEPA Region III 1997b), and the Health Effects Assessment Summary Tables (HEAST; USEPA 1994).

Based on differences in contaminant sources and exposed populations, the following four stream segments were evaluated in this risk assessment:

- West Soldier Creek, on-Base
- West Soldier Creek, off-Base
- East Soldier Creek, on-Base

• East Soldier Creek, off-Base

The chemicals of concern (COCs) identified include metals, polychlorinated biphenyls (PCBs), chlorinated pesticides, volatile organic compounds (VOCs), and semivolatile organic compounds (SVOCs). An evaluation of potential health risks was performed for a group of exposure scenarios believed to represent potential forms of human activities that could occur at these areas. These exposure scenarios, which are consistent with the RA previously

completed for Tinker AFB by WCFS, include the following:

• Construction workers involved in repair or installation of underground

pipelines around or under on-Base portions of the creeks; and

• Residents wading or swimming in the off-Base portion of West and East

Soldier Creeks.

Swimming was only evaluated for the child scenario for East Soldier Creek; all other scenarios assume wading only. Potential health risks associated with surface water and sediment exposure were evaluated for both on-site construction workers and off-site residents. The results of the risk characterization indicate that for all scenarios, potential cancer risks are below or within the USEPA advisory range of 10⁻⁶ to 10⁻⁴ and the USEPA noncarcinogenic health hazard of 1.0. These results indicate that exposure to surface water and sediments in West and East Soldier Creeks is not likely to result in an unacceptable

cancer risk or noncarcinogenic hazard for any on-Base or off-Base populations under current

or future stream use conditions.

The results of this current RA were compared to those from the two previous RAs prepared

by WCFS (1996, 1997b). In general, no dramatic changes between the first two WCFS RAs

and the current (third year) WCFS RA were identified as part of a trend analysis. Therefore, no definitive statement can be made regarding trends at East and West Soldier Creeks based

the definitive statement can be made regarding trends at East and west soldier creeks based

on these results. The differences in estimated noncarcinogenic adverse health effects and

carcinogenic risks are due to changes in contaminant concentrations and chemicals which

were detected in the sediments and surface water. These differences are expected because the

stream is a dynamic system affected by such factors as precipitation levels. Effluent outfall

ES-2

Q F96526 3MR0801- DOC adg md 12 1 97 Tinker AFB - Soldier Creek - Long-Term Monitoring flow and concentrations also impact the dynamics of the stream system. Like heavy

precipitation, large volumes of effluent outfall may dilute concentrations in the stream

system. Therefore, it is possible for concentrations in the stream to rise despite the closure of

outfalls.

To date, none of the RAs indicated any unacceptable adverse health effects or cancer risks

associated with exposure to West or East Soldier Creeks for any on-Base or off-Base

population under current or future stream use conditions. Consequently, no remedial action

is necessary based on risks to human health.

As part of the RA, cleanup goals were developed to identify health-protective levels for each

COC. Although remediation is not warranted at the present time (based on risk to human

health), the cleanup goals provide a set of "action criteria" should remedial action be required

ES-3

in the future.

Q F96526 3MR9801- DOC 1dg md 12 L97 Tinker AFB - Soldier Creek - Long-Term Monitoring The purpose of an RA, as defined by USEPA, is to "provide a framework for developing the risk information necessary to assist decision-making at remedial sites" [Risk Assessment Guidance for Superfund (RAGS); USEPA 1989a]. As such, this document specifically addresses potential risks associated with exposure to surface water and sediment from portions of East and West Soldier Creek that may have been impacted by contaminant releases from Tinker Air Force Base (AFB).

The organization of this RA follows the basic structure presented in the RAGS. In addition, sections have been included on trend analysis with the two previous WCFS RAs and the development of Remedial Action Objectives (RAOs). The individual sections of this RA consist of the following:

- A discussion of pertinent site background information
- Identification of site-specific chemicals of concern (COCs) for each of the four stream segments under investigation
- An exposure assessment that identifies potentially exposed populations and the exposure parameters used to quantify chemical uptake by those populations
- An assessment of the toxic properties of the COCs
- An estimation of the potential cancer risks and noncarcinogenic health hazards for exposed populations
- Development of RAOs for COCs

• An analysis of uncertainties associated with each of the steps of the RA, and the likely impact of these uncertainties on the results and conclusions of the RA

• Risk trend analysis

• Conclusions and recommendations

1.1 SITE DESCRIPTION

As illustrated on **Figure 1-1**, Tinker Air Force Base (AFB) is located within the corporate limits of Oklahoma City, Oklahoma, approximately seven miles east-southeast of Oklahoma City's inner-core metropolitan area. The Base is bounded by Midwest City on the north, Del City on the northwest, and Oklahoma City on the east, south, and southwest. The boundaries of Tinker AFB are defined by Sooner Road to the west, Douglas Boulevard to the east, Southeast 29th Street to the north, and Southeast 74th Street to the south. Midwest City and Del City are heavily populated and contain both residential and commercial areas. The area under Oklahoma City jurisdiction is lightly developed residential. Tinker AFB lies within an area representing a transition from residential and industrial/commercial land use on the north and west to agricultural land use to the east and south.

The principal surface water drainage ways for Tinker AFB are the Crutcho, Kuhlman, and Soldier Creeks (Figure 1-2). The main channel of Soldier Creek is located to the east of Tinker AFB, flowing to the north from its headwaters near Southwest 59th Street to its confluence with Crutcho Creek. Two Soldier Creek tributaries originate on the Base. For the purpose of this RA, the tributary of Soldier Creek east of Building 3001 is named East Soldier Creek and the tributary west of Building 3001 is named West Soldier Creek. East Soldier Creek originates north of Building 3705, flows northward along the east side of Building 3001, past the Industrial Wastewater Treatment Plant (IWTP), and drains into Soldier Creek approximately one mile downstream. West Soldier Creek originates on the west side of Building 3001 and flows northward approximately two miles to its confluence with Soldier Creek.

As identified in the Work Plan (WCFS 1994), the current scope of investigation includes those portions of East and West Soldier Creeks from their points of origin and extending to their intersection with Interstate 40, north of the Base. Study area boundaries coincide with those identified in the Remedial Investigation (RI) report (B&V 1993). Data from the RI indicated that a contaminant concentration gradient exists to a point south (upstream) of the study boundary. The study area boundary was established based on the following criteria:

• Limits of measurable levels of contaminants (as compared to background locations)

Area of such size that a definitive assessment could be performed

• Allowance for source identification

Because both the contaminants and contaminant sources found in East Soldier Creek differ from those found in West Soldier Creek, these streams are evaluated separately. In addition, the on-Base stream segments of both streams are evaluated separately from their off-Base segments to account for differences in potentially exposed populations. Stream segments and exposure scenarios evaluated in this RA are the same as those evaluated in the two previous RAs (WCFS 1996, 1997b). Based on this approach, the following four stream segments are evaluated separately in this RA:

West Soldier Creek, on-Base

West Soldier Creek, off-Base

East Soldier Creek, on-Base

East Soldier Creek, off-Base

1.2 SITE OPERATIONS AND REGULATORY HISTORY

Tinker AFB is an active United States Air Force industrial facility responsible for the maintenance of a wide variety of military aircraft. Tinker AFB was activated in March of 1942 under the name of Midwest Air Depot. During World War II, the depot was

responsible for reconditioning, modifying, and modernizing aircraft, vehicles, and equipment. The primary mission has not changed. Tinker AFB is still a major industrial complex for overhauling modifying and repairing military aircraft engines and accessory items.

As part of the overall Air Force Installation Restoration Program (IRP), Tinker AFB began investigating previously used disposal sites in 1981 (USEPA 1988). A Base-wide sampling program was conducted in 1983. Analytical results from the sampling program indicated trichloroethene was present in the groundwater. Remedial investigations were conducted by Tinker AFB through the Tulsa District Corps of Engineers (COE) from 1986 to 1989 to determine the nature and extent of groundwater contamination. These investigations determined that chromium, in addition to trichloroethene, was a COC in groundwater. On July 22, 1987, the Building 3001 site and the Soldier Creek site were added to the National Priorities List (NPL). In 1990 and 1991, B&V conducted a Phase I and Phase II Remedial Investigation/Feasibility Study (RI/FS) to determine the extent of sediment and surface water contamination along East, West, and Main Soldier Creek. As part of the RI, B&V performed a baseline human health RA and concluded that sediment and surface water in Soldier Creek did not pose an unacceptable risk to human health (B&V 1993). WCFS did subsequent RAs and again found that the sediment and surface water in East and West Soldier Creeks posed no unacceptable risk to human health (WCFS 1996, 1997b). Since submission of the RI/FS reports, Tinker AFB has reduced or eliminated releases from several outfalls, including the IWTP outfall, which was closed in April of 1996.

1.3 SITE PHYSICAL SETTING

Tinker AFB is located in an area characterized by gently rolling hills, broad flat plains, and well-entrenched main streams. Ground level ranges from 1.210 feet above sea level on the northwest side of the Base to about 1.320 feet above mean sea level at the southeast corner of the Base (Radian 1985). Historic data from the Tinker AFB weather station indicate that the average annual precipitation at Tinker AFB is approximately 34 inches per year. Rainfall occurs in a distinct, seasonal pattern ranging from a high of 5.8 inches in May to a low of 1.2 inches in January (Parsons 1996).

Soldier Creek and its tributaries receive surface runoff from approximately 9,000 acres.

Areas on Tinker AFB that contribute surface water runoff or effluent discharge to Soldier

Creek and its tributaries include the easternmost runway areas and the Building 3001

complex. The Building 3001 complex consists of an aircraft overhaul and modification

complex to support the mission of the Oklahoma City Air Logistics Center.

The IWTP, located in the northeastern portion of the Base, received industrial process

discharge waters from the Building 3001 complex and other buildings and operations in the

area through a series of underground lines. At the plant, these waters were treated and

discharged to East Soldier Creek under a National Pollutant Discharge Elimination System

(NPDES) permit. The IWPT is currently used as a pretreatment facility and no longer

discharges to East Soldier Creek on a regular basis. However, the IWTP is still permitted for

use in case of emergency.

A sanitary wastewater treatment facility also discharged to East Soldier Creek under the same

permit as the IWPT. Sanitary waste currently discharges directly to the Oklahoma City

POTW.

A storm sewer investigation was conducted by NUS Corporation (1989) to characterize the

sources of the outfalls to Soldier Creek from Tinker AFB. This study identified the

following four categories of waste discharge:

Process discharge, such as cooling tower blowdown

Low volume sources, such as oils derived from compressors, vacuum pumps

and fume handling systems that enter the storm sewer system

Cross-contamination between waste systems and the storm sewers due to

improper connections or broken lines

Inappropriate disposal of wastes, such as solvents and lubricating oils, into

floor drains catch basins, etc. This category of waste discharge is believed to

represent the primary source of contamination to Soldier Creek

1-5

Q F96526 3MR0801- DOC (dg md (2.1.97) Tinker AFB - Soldier Creek - Long-Term Monitoring Discharges from the various Tinker AFB outfalls represent semicontinuous sources to both East and West Soldier Creeks. Studies by Parsons indicate that the relative contribution of the outfalls bear little, if any, correlation to the annual precipitation cycle (Parsons 1996).

Thus, it is likely the Tinker AFB outfalls will have year-round influence on surface water quality, while site runoff is more likely to influence surface water in a seasonal fashion.

1.4 OBJECTIVES OF THE HUMAN HEALTH RISK ASSESSMENT

Two separate evaluations of the potential risks associated with East and West Soldier Creeks

surface water and sediments were previously performed by WCFS (1996, 1997b). The

purpose of this RA was to provide information on potential current and future risks based on current contaminant levels, and then compare the results with those of the two previous

annual RAs to determine if the previous conclusions are still valid. This RA used the same

This ica determine it the previous conclusions are still valid. This ica deed the same

exposure values and assumptions as previously used so that a direct comparison of results

could be made. Finally, this RA developed cleanup goals for stream sediments that are

protective of human populations.

As mentioned previously, development of quantitative risk estimates for potentially exposed

populations is based on guidance provided in the RAGS. In addition, a variety of factors are

used to characterize and quantify potential health risks, including:

• Chemical fate and transport characteristics

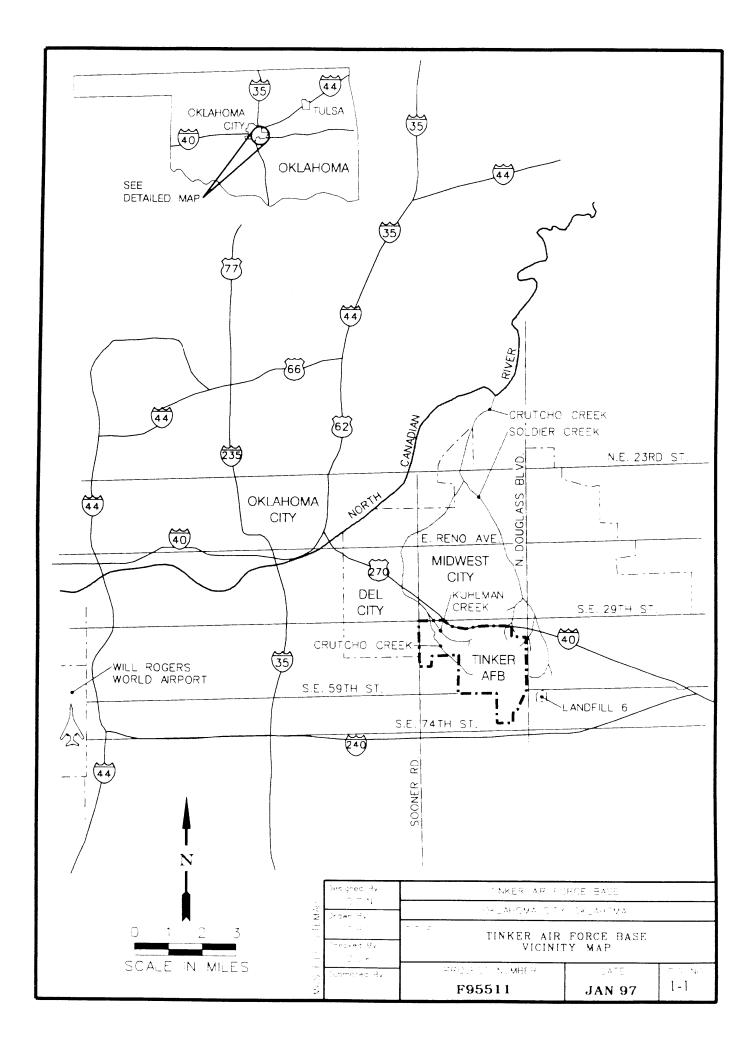
Basic toxicology information

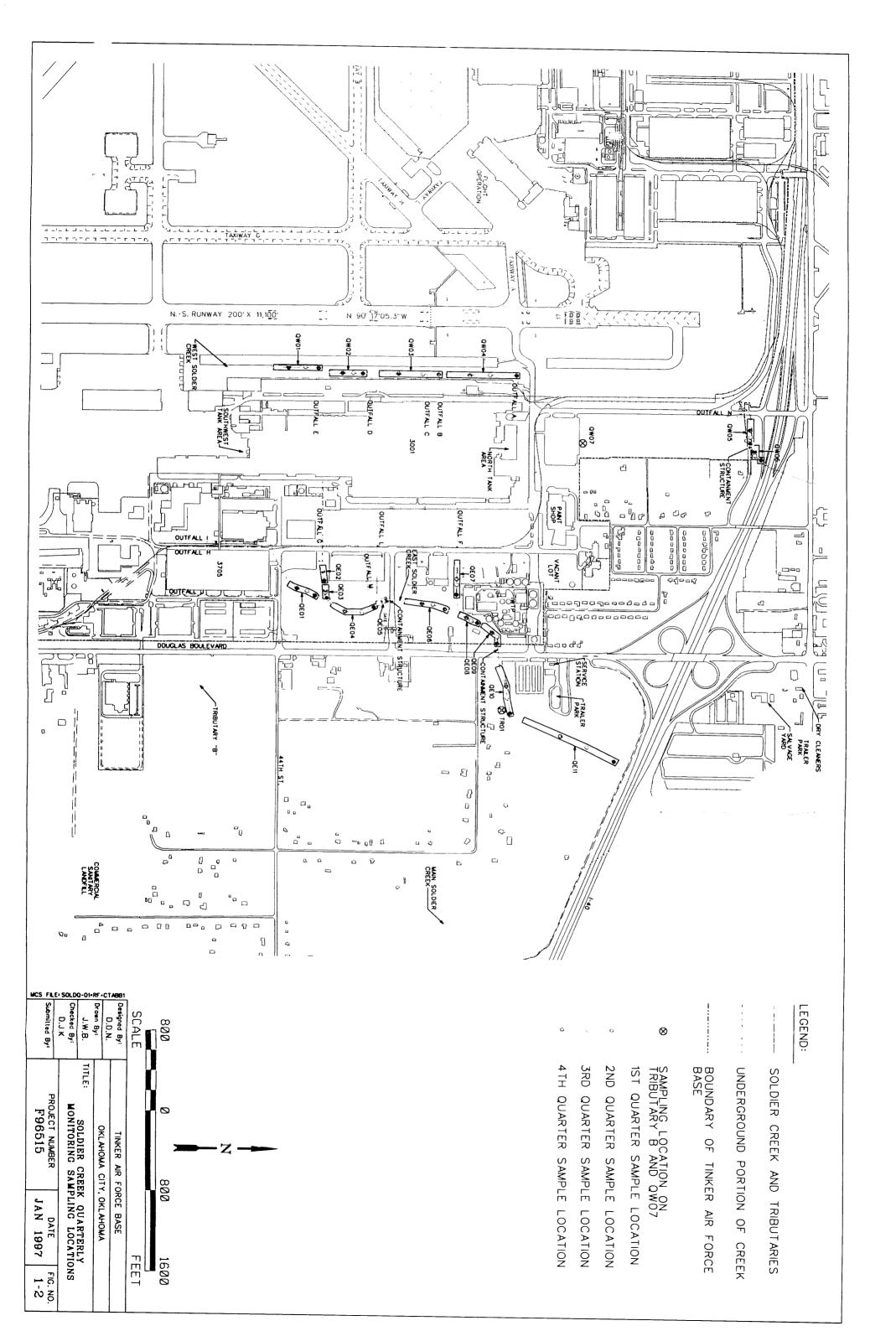
Site-specific information relative to potentially exposed populations, exposure

routes, exposure point concentrations, and general site conditions

USEPA guidance documents used to conduct the RA include RAGS, the Exposure Factors

Handbook (1989b), Standard Default Exposure Factors (1991a), Integrated Risk Information


System on-line database (IRIS 1997a), Dermal Exposure Assessment: Principles and


Applications (1992a), and Risk Assessment Guidance for Superfund Part B. Development of

Risk-based Preliminary Remediation Goals (1991b).

Q F96526 3MR9801- DOC adg md 32 1.97 Tanker AFB - Soldier Creek - Long-Term Monitoring Third Annual Report

1-6

The purpose of the RA was to evaluate the potential human health risks associated with the site under the no-action alternative (i.e., in the absence of remedial and corrective action). The first step in this evaluation was the selection process used to identify a group of chemicals of concern (COCs). This group of chemicals, although a subset of all chemicals detected on-site, represents those chemicals posing the greatest potential health risks at the site. Thus, the quantification of potential health risks posed by the site can be focused on the COCs without significantly underestimating the total risk. The basic approach used to develop COCs in this report was the same as that used in the RAs previously performed by WCFS (1996, 1997b). Separate lists of COCs have been generated for sediments and surface water for each of the stream segments being investigated, using USEPA selection criteria. The following sections present the COC selection process.

2.1 CHEMICALS EVALUATED AS POTENTIAL COCS

The identification of COCs was based on an evaluation of chemical data from surface water and sediment samples collected by WCFS in the semiannual sampling events of 1997. **Table 2-1** lists the sampling locations associated with each investigation area. A total of four classes of chemicals were evaluated:

- Volatile organic compounds (46 analytes)
- Semivolatile organic compounds (91 analytes)
- PCBs/pesticides (27 analytes)
- Metals (24 analytes)

The numbers in parentheses denote the total number of analytes within each class of chemicals for which analyses were performed. (The number of analytes for surface water varied slightly from those listed above for sediments.)

2.2 CHEMICALS EXCLUDED FROM THE RISK ASSESSMENT

Although the analytical results identified a number of chemicals present in sediment and

surface water samples from East and West Soldier Creek, not all of these chemicals are likely

to pose risks to human health. Therefore, it is appropriate to systematically exclude selected

chemicals from the RA so that the quantitative risk characterization can effectively focus on

only those chemicals posing the greatest potential health risks. The RAGS (USEPA 1989a)

describes several procedures to reduce the number of chemicals to be considered. Chemicals

can be systematically excluded for any of the following reasons:

• The compound was not detected in any sample.

• The compound was found at a low frequency and concentration.

• The compound has a low inherent toxicity or is an essential nutrient.

• The compound was found at background levels.

• The compound was identified as a laboratory contaminant (not applicable to

this RA).

The rationale for excluding chemicals meeting any of these criteria is that their contribution

to the incremental health risks posed by the site is negligible.

The following sections present the COC selection process and final lists of COCs for surface

water and sediments from East and West Soldier Creek.

2.3 COC SELECTION PROCESS

2.3.1 Chemicals Not Detected

Chemicals not detected in a specific stream segment and medium (surface water or sediment)

were excluded from the medium-specific COC list for that stream segment. The following

2-2

tables list chemicals excluded from the COC list because they were not detected:

Q F96526 3MR0801- DOC 3dg md 12 1.97 Tinker AFB - Soldier Creek - Long-Term Monitorine • Table 2-2 lists a total of 161 chemicals for which analyses were performed, but were not detected in the surface water in the on-Base portion of West Soldier Creek. These chemicals were excluded from the surface water COC list for this stream segment.

• Table 2-3 lists a total of 161 chemicals for which analyses were performed, but were not detected in the surface water in the off-Base portion of West Soldier Creek. These chemicals were excluded from the surface water COC list for this stream segment.

• Table 2-4 lists a total of 157 chemicals for which analyses were performed, but were not detected in the surface water in the on-Base portion of East Soldier Creek. These chemicals were excluded from the surface water COC list for this stream segment.

• Table 2-5 lists a total of 163 chemicals for which analyses were performed, but were not detected in the surface water in the off-Base portion of East Soldier Creek. These chemicals were excluded from the surface water COC list for this stream segment.

• Table 2-6 lists a total of 126 chemicals for which analyses were performed, but were not detected in the sediments in the on-Base portion of West Soldier Creek. These chemicals were excluded from the sediment COC list for this stream segment.

• Table 2-7 lists a total of 140 chemicals for which analyses were performed, but were not detected in the sediments in the off-Base portion of West Soldier Creek. These chemicals were excluded from the sediment COC list for this stream segment.

• Table 2-8 lists a total of 109 chemicals for which analyses were performed, but were not detected in the sediments in the on-Base portion of East Soldier

Creek. As a result, these chemicals were excluded from the sediment COC

list for this stream segment.

• Table 2-9 lists a total of 145 chemicals for which analyses were performed,

but were not detected in the sediments in the off-Base portion of East Soldier

Creek. As a result, these chemicals were excluded from the sediment COC list

for this stream segment.

2.3.2 Chemicals Detected at Low Frequency

Chemicals detected with low frequency and low concentration do not indicate a clear pattern

of contamination. Moreover, the potential health risks that may be associated with low

detection-frequency compounds are expected to be much lower compared with more

prevalent chemicals based on the potential for more frequent human exposure. In accordance

with the RAGS (USEPA 1989a), a frequency of 5 percent was used as the assessment

criterion (i.e., chemicals were excluded as potential COCs if they were present ≤ 5 percent of

all samples). All chemicals detected in 5 percent (or less) of the samples were then compared

to USEPA Region III Risk-based Concentrations (RBCs) (USEPA 1997b) to ensure that

chemicals present as "hot spots" were not being excluded. If the maximum detected

concentration exceeded the RBC for industrial soils, the chemical was retained as a COC. If

the maximum concentration was below the EPA Region III RBC, the chemical was excluded

as a potential COC.

Because of the limited number of surface water samples, no chemicals could be excluded

from the COC list on the basis of low frequency of detection. Additionally, the off-Base

segments for both the West and East Soldier Creek sediments also had a limited number of

samples: thus, no chemicals were excluded from these COC lists based on low frequency of

detection criterion. The following tables list chemicals that were excluded as potential COCs

2-4

based on the low frequency and low concentration criteria.

Table 2-10 lists a total of 8 chemicals detected at low frequency and at low

concentrations in sediment samples collected from the on-Base portion of

Q. F96526 3MR0801- DOC adg md 12 1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring West Soldier Creek. These chemicals were excluded from the surface water

COC list for that stream segment.

• Table 2-11 lists a total of 3 chemicals detected at low frequency and at low

concentrations in sediments collected from the on-Base portion of East Soldier

Creek. These chemicals were excluded from the sediment COC list for that

stream segment.

2.3.3 Essential Nutrients

Chemicals that are essential nutrients may be excluded from consideration when they are

present at relatively low levels (i.e., levels that are likely to produce beneficial rather than

toxic effects) (USEPA 1989a). Comparisons were made between the estimated intake of

essential nutrients found in surface water and sediment and the recommended daily

allowances (RDAs) established by the National Research Council (NRC) (1989). Daily

intake of nutrients from East and West Soldier Creek was estimated from maximum detected

concentrations, assuming that an individual ingests 0.5 L/day of surface water (an upper-

bound water ingestion value assuming 10 hours swimming), or 100 mg/kg of sediments (the

upper-bound daily soil ingestion rate for adults). Essential nutrient evaluation was performed

for calcium, chromium, copper, fluoride, iodine, iron, magnesium, manganese, molybdenum,

phosphorus, potassium, selenium, and zinc.

In addition to chemicals excluded based on RDAs, sodium was also excluded based on

comparison with normal dietary intake. While sodium is an essential nutrient, there is not an

established RDA for this element. The normal dietary intake of sodium in the U.S. is greater

than 10,000 mg/day (Nelson 1992), while dietary levels less than 1,000 mg/day are

considered "sodium-restricted."

The following tables list chemicals that are essential nutrients and that were excluded from

the COC lists because they are present at concentrations that are likely to be beneficial rather

2-5

than detrimental:

O F96526 3MR0801- DOC 3dg md 12 1.97 Tinker AFB - Soldier Creek - Long-Fenn Monitoring

- A total of 10 nutrients (**Table 2-12**) were excluded from the surface water COC list for the on-Base portion of West Soldier Creek.
- A total of 10 nutrients (**Table 2-13**) were excluded from the surface water COC list for the off-Base portion of West Soldier Creek.
- A total of 11 nutrients (**Table 2-14**) were excluded from the surface water COC list for the on-Base portion of East Soldier Creek.
- A total of 10 nutrients (**Table 2-15**) were excluded from the surface water COC list for the off-Base portion of East Soldier Creek.
- A total of 10 nutrients (**Table 2-16**) were excluded from the sediment COC list for the on-Base portion of West Soldier Creek.
- A total of 10 nutrients (**Table 2-17**) were excluded from the sediment COC list for the off-Base portion of West Soldier Creek.
- A total of 10 nutrients (**Table 2-18**) were excluded from the sediment COC list for the on-Base portion of East Soldier Creek.
- A total of 10 nutrients (**Table 2-19**) were excluded from the sediment COC list for the off-Base portion of East Soldier Creek.

2.3.4 Chemicals Present at Background Concentrations

As noted in the RAGS (USEPA 1989a), a comparison of sample concentrations to naturally occurring background concentrations can be used to identify nonsite-related chemicals. This approach was taken for evaluating inorganic chemicals only. The maximum concentrations for samples collected from an upstream and off-Base portion of Crutcho Creek (PES 1996) were considered as the background concentrations. Chemicals found to be present at concentrations within 2 times background concentrations were assumed to be present at background levels (as defined in USEPA Region IV. USEPA 1991d), and were subsequently

not included on the list of potential chemicals of concern. Based on this analysis, the following chemicals were excluded as potential COCs:

• A total of 4 chemicals (**Table 2-20**) were excluded from the surface water COC list on-Base portion of West Soldier Creek because they were detected at background levels.

• A total of 4 chemicals (**Table 2-21**) were excluded from the surface water COC list for the off-Base portion of West Soldier Creek because they were detected at background levels.

• A total of 4 chemicals (**Table 2-22**) were excluded from the surface water COC list the on-Base portion of East Soldier Creek because they were detected at background levels.

 A total of 4 chemicals (Table 2-23) were excluded from the surface water COC list for the off-Base portion of East Soldier Creek because they were detected at background levels.

• A total of 4 chemicals (**Table 2-24**) were excluded from the sediment COC list for the on-Base portion of West Soldier Creek because they were detected at background levels.

• A total of 4 chemicals (**Table 2-25**) were excluded from the sediment COC list for the off-Base portion of West Soldier Creek because they were detected at background levels.

• A total of 3 chemicals (**Table 2-26**) were excluded from the sediment COC list for the on-Base portion of East Soldier Creek because they were detected at background levels.

• A total of 6 chemicals (**Table 2-27**) were excluded from the sediment COC list for the off-Base portion of East Soldier Creek because they were detected at background levels.

2.4 CHEMICALS OF CONCERN

A group of COCs was identified based on the criteria described in the previous sections for each environmental medium (surface water and sediments) in each stream segment. It is important to note that many of the identified COCs are present at very low concentrations and well below human health-based criteria such as maximum contaminant levels (MCLs). These chemicals have been retained for future evaluation as a conservative measure. These selected chemicals are further evaluated in the quantitative RA to determine whether they may contribute risks to the human receptors discussed in **Section 3.0**. The COCs, maximum and minimum detected concentrations, and frequency of detection are listed in the following tables:

- Table 2-28 presents the COCs for surface water in the on-Base portion of West Soldier Creek.
- Table 2-29 presents the COCs for surface water in the off-Base portion of West Soldier Creek.
- **Table 2-30** presents the COCs for surface water in the on-Base portion of East Soldier Creek.
- **Table 2-31** presents the COCs for surface water in the off-Base portion of East Soldier Creek.
- **Table 2-32** presents the COCs for sediments in the on-Base portion of West Soldier Creek.
- Table 2-33 presents the COCs for sediments in the off-Base portion of West Soldier Creek.

- Table 2-34 presents the COCs for sediments in the on-Base portion of East Soldier Creek.
- **Table 2-35** presents the COCs for sediments in the off-Base portion of East Soldier Creek.

TABLE 2-1
SAMPLING LOCATIONS IN EACH STREAM SEGMENT

AREA	SAMPLE LOCATION
On-Base West Soldier Creek	QW01
(Area I)	QW02
	QW03
	QW04
	QW07
Off-Base West Soldier Creek	QW05
(Area 2)	QW06
On-Base East Soldier Creek	QE01
(Area 3)	QE02
	QE03
	QE04
	QE05
	QE06
	QE07
	QE08
	QE09
Off-Base East Soldier Creek	QE10
Area 4)	QE11

Chemical Group	Chemical	Number of Samples
Metals	Beryllium	3
	Mercury	3
	Silver	3
	Thallium	3
PCBs/Pesticides	4.4'-DDD	3
	4,4'-DDE	3
	4,4'-DDT	3
	Aldrin	3
	Aroclor 1016	3
	Aroclor 1221	3
	Aroclor 1232	3
	Aroclor 1242	3
	Aroclor 1248	3
	Aroclor 1254	3
	Aroclor 1260	3
	Dieldrin	3
	Endosulfan I	3
	Endosulfan II	3
	Endosulfan sulfate	3
	Endrin	3
	Heptachlor	3
	Heptachlor epoxide	3
	Methoxychlor	3
	Toxaphene	3
	alpha-BHC	3
	alpha-Chlordane	3
, , , , , , , , , , , , , , , , , , ,	beta-BHC	3
	delta-BHC	3
	gamma-BHC (Lindane)	3
	gamma-Chlordane	3
Semivolatile Organics	1,2,4,5-Tetrachloro-benzene	3
	1.2,4-Γrichlorobenzene	3
	1.2-Dichlorobenzene	3
	1.3-Dichlorobenzene	3
	1.4-Dichlorobenzene	3
	I-Chloronaphthalene	3
	1-Naphthylamine	3
	2,2'-oxybis(1-Chloropropane)	3
	2,3,4,6-Tetrachlorophenol	3
· · · · · · · · · · · · · · · · · · ·	2.4.5-Trichlorophenol	3
	2,4.6- Frichlorophenol	3
	2,4-Dichlorophenol	3
	2.4-Dimethylphenol	3
	2.4-Dinitrophenol	3
	2.4-Dinitrotoluene	3

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	2.6-Dichlorophenol	3
(Continued)	2.6-Dinitrotoluene	3
<u> </u>	2-Chloronaphthalene	3
	2-Chlorophenol	3
	2-Methylnaphthalene	3
	2-Methylphenol	3
	2-Naphthylamine	3
	2-Nitrophenol	3
	2-Picoline	3
and the second s	3.3'-Dichlorobenzidine	3
	3-Methylcholanthrene	3
	3-Nitroaniline	3
	3/4-Methylphenol	3
Marie	4,6-Dinitro-2-methylphenol	3
	4-Aminobiphenyl	3
	4-Bromophenyl phenyl ether	3
	4-Chloro-3-methylphenol	3
	4-Chloroaniline	3
	4-Chlorophenyl phenyl ether	3
	4-Nitroaniline	3
	4-Nitrophenol	3
	7.12-Dimethylbenz(a)-anthracene	3
	Acenaphthene	3
	Acenaphthylene	3
	Acetophenone	3
	Aniline	3
	Anthracene	3
	Azobenzene	3
	Benzidine	3
	Benzo(a)anthracene	3
to the state of th	Benzo(a)pyrene	3
	Benzo(b)fluoranthene	3
	Benzo(g.h.i)perylene	3
	Benzo(k)fluoranthene	3
	Benzoic acid	3
	Benzyl alcohol	3
	Butyl benzyl phthalate	3
	Chrysene	3
	Di-n-butyl phthalate	3
	Di-n-octyl phthalate	3
	Dibenz(a,h)anthracene	3
	Dibenzofuran	3
	Diethyl phthalate	3
	Dimethy! phthalate	3
	Diphenylamine	3

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	Ethyl methanesulfonate	3
(Continued)	Fluoranthene	3
	Fluorene	3
	Hexachlorobenzene	3
	Hexachlorobutadiene	3
	Hexachlorocyclopentadiene	3
	Hexachloroethane	3
	Indeno(1.2.3-cd)pyrene	3
	Isophorone	3
	Methyl methanesulfonate	3
	N-Nitroso-di-n-butylamine	3
	N-Nitroso-di-n-propylamine	3
	N-Nitrosodiphenylamine	3
	N-Nitrosopiperidine	3
	Naphthalene	3
	Nitrobenzene	3
	Pentachlorobenzene	3
	Pentachloronitrobenzene	3
	Pentachlorophenol	3
	Phenacetin	3
	Phenanthrene	3
	Phenol	3
	Pronamide	3
	Pyrene	3
	a.a-Dimethylphenethyl-amine	3
	bis(2-Chloroethoxy)methane	3
MP4.	bis(2-Chloroethyl) ether	3
	p-Dimethy laminoazobenzene	3
Volatile Organics	1.1.1.2-Tetrachloroethane	3
	1.1.1-Trichloroethane	3
	1.1.2.2-Tetrachloroethane	3
	1.1.2-Trichloroethane	3
	1.1-Dichloroethane	3
	1.1-Dichloroethene	3
	1.2.3-Trichloropropane	3
	1,2-Dichloroethane	3
	1,2-Dichloropropane	3
A	2-Butanone (MEK)	3
	2-Chloroethyl vinyl ether	3
	2-Hexanone	3
	4-Methyl-2-pentanone (MIBK)	3
	Acrolem	3
	Aerylonitrile	3
	Benzene	3
<u> </u>	Bromodichloromethane	
	127 Out of the trians	

Chemical Group	Chemical	Number of Samples
Volatile Organics	Bromoform	3
(Continued)	Bromomethane	3
	Carbon disulfide	3
	Carbon tetrachloride	3
	Chlorobenzene	3
	Chloroethane	3
	Chloroform	3
	Dibromochloromethane	3
	Dibromomethane	3
	Dichlorodifluoromethane	3
	Ethanol	3
	Ethyl methacrylate	3
	Ethylbenzene	3
	Iodomethane	3
	Methylene chloride	3
	Tetrachloroethene	3
	Toluene	3
	Trichloroethene	3
	Trichlorofluoromethane	3
	Vinyl acetate	3
	Vinyl chloride	3
	Xylenes (total)	3
	cis-1,3-Dichloropropene	3
	trans-1.2-Dichloroethene	3
	trans-1,3-Dichloropropene	3
	trans-1,4-Dichloro-2-butene	3

Chemical Group	Chemical	Number of Samples
Metals	Arsenic	4
	Beryllium	4
	Mercury	4
	Silver	4
	Thallium	4
Pesticides/PCBs	4.4'-DDD	4
	4,4'-DDE	1
	4.4'-DDT	1
	Aldrin	4
	Aroclor 1016	4
	Aroclor 1221	4
	Aroclor 1232	1
	Aroclor 1242	4
	Aroclor 1248	1
	Aroclor 1254	4
	Aroclor 1260	4
	Dieldrin	4
	Endosulfan I	4
	Endosulfan II	4
	Endosulfan sulfate	4
	Endrin	4
	Heptachlor	4
	Heptachlor epoxide	4
	Methoxychlor	4
	Toxaphene	4
	alpha-BHC	4
	alpha-Chlordane	4
	beta-BHC	1
	delta-BHC	4
	gamma-BHC (Lindane)	4
	gamma-Chlordane	4
Semivolatile Organics	1.2.4.5- l'etrachloro-benzene	4
	1.2.4-Trichlorobenzene	1
	1,2-Dichlorobenzene	4
	1.3-Dichlorobenzene	4
	1,4-Dichlorobenzene	-4
	1-Chloronaphthalene	4
	1-Naphthylamine	4
	2.2'-oxybis(1-Chloropropane)	1
	2.3.4.6- Fetrachlorophenol	4
	2.4.5-Trichlorophenol	1
	2.4.6-Trichlorophenol	1
	2.4-Dichlorophenol	+
	2.4-Dimethylphenol	4
	2.4-Dinitrophenol	4

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	2.4-Dinitrotoluene	4
(Continued)	2.6-Dichlorophenol	4
	2,6-Dinitrotoluene	4
	2-Chloronaphthalene	4
	2-Chlorophenol	4
	2-Methylnaphthalene	4
	2-Methylphenol	4
	2-Naphthylamine	4
	2-Nitrophenol	4
	2-Picoline	4
	3.3'-Dichlorobenzidine	4
	3-Methylcholanthrene	4
	3-Nitroaniline	4
	3/4-Methylphenol	4
	4.6-Dinitro-2-methylphenol	4
	4-Aminobiphenyl	4
	4-Bromophenyl phenyl ether	4
	4-Chloro-3-methylphenol	4
	4-Chloroaniline	4
	4-Chlorophenyl phenyl ether	4
	4-Nitroaniline	4
	4-Nitrophenol	4
	7,12-Dimethylbenz(a)-anthracene	4
	Acenaphthene	4
	Acenaphthylene	4
	Acetophenone	4
	Aniline	4
	Anthracene	4
	Azobenzene	4
	Benzidine	4
	Benzo(a)anthracene	4
	Benzo(a)pyrene	4
	Benzo(b)fluoranthene	4
	Benzo(g,h.i)perylene	4
	Benzo(k)fluoranthene	4
	Benzoic acid	1
	Benzyl alcohol	4
	Butyl benzyl phthalate	4
	Chrysene	-1
	Di-n-butyl phthalate	4
	Di-n-octyl phthalate	4
	Dibenz(a,h)anthracene	4
	Dibenzofuran	4
	Diethy I phthalate	4
	Dimethy Lphthalate	1

TABLE 2-3

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	Diphenylamine	4
(Continued)	Ethyl methanesulfonate	4
	Fluoranthene	1
	Fluorene	4
	Hexachlorobenzene	4
	Hexachlorobutadiene	4
	Hexachlorocyclopentadiene	4
	Hexachloroethane	4
	Indeno(1,2,3-cd)pyrene	4
	Isophorone	4
	Methyl methanesulfonate	1
	N-Nitroso-di-n-butylamine	4
	N-Nitroso-di-n-propylamine	4
	N-Nitrosodiphenylamine	4
	N-Nitrosopiperidine	4
	Naphthalene	4
	Nitrobenzene	4
	Pentachlorobenzene	4
	Pentachloronitrobenzene	4
	Pentachlorophenol	4
	Phenacetin	4
	Phenanthrene	4
	Phenol	1
	Pronamide	1
	Pyrene	1
	a.a-Dimethylphenethyl-amine	4
	bis(2-Chloroethoxy)methane	4
	bis(2-Chloroethyl) ether	1
	bis(2-Ethylhexyl)phthalate	4
	p-Dimethylaminoazobenzene	4
Volatile Organics	1.1.1.2-Tetrachloroethane	4
	1.1.1-Trichloroethane	4
	1,1,2,2-Tetrachloroethane	4
	1.1.2-Trichloroethane	1
	1.1-Dichloroethane	1
	1.1-Dichloroethene	
	1,2,3-Trichloropropane	1
	1,2-Dichloroethane	1
	1,2-Dichloropropane	1
	2-Butanone (MEK)	4
	2-Chloroethyl vinyl ether	1
	2-Hexanone	1
	4-Methyl-2-pentanone (MIBK)	4
	Acrolem	1
	Acrylomtrile	

Chemical Group	Chemical	Number of Samples
Volatile Organics	Benzene	4
(Continued)	Bromodichloromethane	4
	Bromotorm	4
	Carbon disulfide	4
	Carbon tetrachloride	-1
	Chlorobenzene	4
	Chloroethane	-4
	Chloroform	4
	Dibromochloromethane	4
	Dibromomethane	4
	Dichlorodifluoromethane	4
	Ethanol	4
	Ethyl methacrylate	4
	Ethylbenzene	4
	Styrene	4
	Tetrachloroethene	4
	Toluene	4
	Trichloroethene	4
<u> </u>	Trichlorofluoromethane	4
	Vinyl acetate	4
	Vinyl chloride	4
	Xylenes (total)	4
	cis-1,3-Dichloropropene	4
	trans-1,2-Dichloroethene	4
	trans-1.3-Dichloropropene	4
	trans-1.4-Dichloro-2-butene	-1

TABLE 2-4

Chemical Group	Chemical	Number of Samples
Metals	Beryllium	18
	Mercury	18
	Thallium	18
Pesticides/PCBs	4,4'-DDD	18
	4,4'-DDE	18
	4,4'-DDT	18
	Aldrin	18
	Aroclor 1016	18
	Aroclor 1221	18
	Aroclor 1232	18
	Aroclor 1242	18
	Aroclor 1248	18
	Aroclor 1260	18
	Dieldrin	18
	Endosulfan I	18
	Endosulfan II	18
	Endosulfan sulfate	18
	Endrin	18
	Heptachlor	18
	Heptachlor epoxide	18
	Methoxychlor	18
	Toxaphene	18
	alpha-BHC	18
	alpha-Chlordane	18
	beta-BHC	18
	delta-BHC	18
	gamma-BHC (Lindane)	18
	gamma-Chlordane	18
Semivolatile Organics	1.2,4,5-Tetrachloro-benzene	18
Semivolathe Organics	1.2,4-Trichlorobenzene	18
	1,2-Dichlorobenzene	18
	1.3-Dichlorobenzene	18
	1.4-Dichlorobenzene	18
	1-Chloronaphthalene	18
	1-Naphthylamine	18
	2.2'-oxybis(1-Chloropropane)	18
	2.3.4,6-Tetrachlorophenol	18
	2.4.5-Trichlorophenol	18
	2.4,6-Trichlorophenol	18
	2.4-Dichlorophenol	18
	2.4-Dimethylphenol	18
	2.4-Dimethylphenol	18
	2.4-Dinitrophenoi 2.4-Dinitrotoluene	18
	2.6-Dichlorophenol	18
	2.6-Dinitrotoluene	18
	2-Chloronaphthalene	18

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	2-Chlorophenol	18
(Continued)	2-Methylnaphthalene	18
	2-Methylphenol	18
	2-Naphthylamine	18
	2-Nitrophenol	18
	2-Picoline	18
	3.3'-Dichlorobenzidine	18
	3-Methylcholanthrene	18
	3-Nitroaniline	18
	3/4-Methylphenol	18
	4.6-Dinitro-2-methylphenol	18
	4-Aminobiphenyl	18
	4-Bromophenyl phenyl ether	18
	4-Chloro-3-methylphenol	18
	4-Chloroaniline	18
	4-Chlorophenyl phenyl ether	18
	4-Nitroaniline	18
	4-Nitrophenol	18
	7.12-Dimethylbenz(a)-anthracene	18
	Acenaphthene	18
	Acenaphthylene	18
	Acetophenone	18
	Aniline	18
	Anthracene	18
	Azobenzene	18
	Benzidine	18
	Benzo(a)anthracene	18
	Benzo(a)pyrene	18
	Benzo(b)fluoranthene	18
	Benzo(g,h,i)perylene	18
	Benzo(k)fluoranthene	18
	Benzoic acid	18
	Benzyl alcohol	18
	Butyl benzyl phthalate	18
	Chrysene	18
	Di-n-butyl phthalate	18
	Di-n-octyl phthalate	18
	Dibenz(a,h)anthracene	18
	Dibenzofuran	18
	Diethyl phthalate	18
	Dimethyl phthalate	18
	Diphenylamine	18
	Ethyl methanesulfonate	18
	Fluoranthene	18
	Fluorene	18
	Hexachlorobenzene	18

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	Hexachlorobutadiene	18
(Continued)	Hexachlorocyclopentadiene	18
	Hexachloroethane	18
	Indeno(1,2,3-cd)pyrene	18
	Isophorone	18
	Methyl methanesulfonate	18
	N-Nitroso-di-n-butylamine	18
	N-Nitroso-di-n-propylamine	18
	N-Nitrosodiphenylamine	18
	N-Nitrosopiperidine	18
	Naphthalene	18
	Nitrobenzene	18
	Pentachlorobenzene	18
	Pentachloronitrobenzene	18
	Pentachlorophenol	18
	Phenacetin	18
	Phenanthrene	18
	Phenol	18
	Pronamide	18
	Pyrene	18
	a.a-Dimethylphenethyl-amine	18
	bis(2-Chloroethoxy)methane	18
	bis(2-Chloroethyl) ether	18
	p-Dimethylaminoazobenzene	18
Volatile Organics	1.1.1.2-Tetrachloroethane	18
· organies	1.1.1-Trichloroethane	18
	1.1.2.2- Fetrachloroethane	18
	1.1.2-Trichloroethane	18
	1.1-Dichloroethane	18
	1.1-Dichloroethene	18
	1.2,3-Trichloropropane	18
	1.2-Dichloroethane	18
	1.2-Dichloropropane	18
	2-Butanone (MEK)	18
	2-Chloroethyl vinyl ether	18
	2-Hexanone	18
	4-Methyl-2-pentanone (MIBK)	18
	Acrolein Acrolein	18
	Acrylonitrile	18
	Benzene	18
No. of the second secon	Bromodichloromethane	18
	Bromomethane Bromomethane	18
	Carbon disulfide	18
	Carbon disuffide Carbon tetrachloride	18
	Caroon (etrachioride Chlorobenzene	18
I .	p. mororenzene	10

Chemical Group	Chemical	Number of Samples
Volatile Organics	Chloroform	18
(Continued)	Chloromethane	18
	Dibromomethane	18
	Dichlorodifluoromethane	18
	Ethyl methacrylate	18
	Ethylbenzene	18
	Iodomethane	18
	Styrene	18
	Tetrachloroethene	18
	Toluene	18
	Trichloroethene	18
	Trichlorofluoromethane	18
	Vinyl acetate	18
	Vinyl chloride	18
	Xylenes (total)	18
	cis-1,3-Dichloropropene	18
	trans-1,2-Dichloroethene	18
	trans-1,3-Dichloropropene	18
	trans-1,4-Dichloro-2-butene	18

Chemical Group	Chemical	Number of Samples
Metals	Beryllium	3
	Mercury	4
	Silver	3
	Thallium	3
Pesticides/PCBs	4.4'-DDD	4
	4,4'-DDE	4
	4,4'-DDT	4
	Aldrin	4
	Aroclor 1016	4
	Aroclor 1221	-1
	Aroclor 1232	4
	Aroclor 1242	4
	Aroclor 1248	4
	Aroclor 1254	4
	Aroclor 1260	4
	Dieldrin	4
	Endosulfan I	4
	Endosulfan II	4
	Endosulfan sulfate	4
	Endrin	4
	Heptachlor	4
	Heptachlor epoxide	4
	Methoxychlor	4
	Toxaphene	4
	alpha-BHC	4
	alpha-Chlordane	4
	beta-BHC	1
	delta-BHC	4
	gamma-BHC (Lindane)	4
	gamma-Chlordane	4
Semivolatile Organics	1.2,4.5-Tetrachloro-benzene	4
	1.2.4-Trichlorobenzene	4
	1.2-Dichlorobenzene	4
	1.3-Dichlorobenzene	4
	1.4-Dichlorobenzene	4
	1-Chloronaphthalene	1
	1-Naphthylamine	1
	2.2'-oxybis(1-Chloropropane)	4
	2.3.4,6-Tetrachlorophenol	4
	2.4.5-Trichlorophenol	1
	2.4.6-Trichlorophenol	4
	2.4-Dichlorophenol	4
	2.4-Dimethylphenol	4
	2.4-Dinitrophenol	.1

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	2.4-Dinitrotoluene	4
Continued)	2.6-Dichlorophenol	4
	2.6-Dinitrotoluene	4
	2-Chloronaphthalene	4
	2-Chlorophenol	-4
	2-Methylnaphthalene	4
	2-Methylphenol	-4
	2-Naphthylamine	4
	2-Nitrophenol	4
	2-Picoline	4
	3.3'-Dichlorobenzidine	4
	3-Methylcholanthrene	1
	3-Nitroaniline	1
	3/4-Methylphenol	4
	4.6-Dinitro-2-methylphenol	1
	4-Aminobiphenyl	1
	4-Bromophenyl phenyl ether	4
	4-Chloro-3-methylphenol	4
	4-Chloroaniline	1
	4-Chlorophenyl phenyl ether	1
	4-Nitroaniline	1
	4-Nitrophenol	4
	7.12-Dimethylbenz(a)-anthracene	1
	Acenaphthene	4
	Acenaphthylene	4
	Acetophenone	4
	Aniline	4
	Anthracene	4
	Azobenzene	4
	Benzidine	1
	Benzo(a)anthracene	4
Market Control of the	Benzo(a)pyrene	4
	Benzo(b)fluoranthene	4
	Benzo(g.h.i)perylene	4
	Benzo(k)fluoranthene	1
	Benzoic acid	1
	Benzyl alcohol	1
	Butyl benzyl phthalate	1
	Chrysene	
	Di-n-butyl phthalate	1
	Di-n-octyl phthalate	4
	Dibenz(a,h)anthracene	4
	Dibenzofuran	1
	Diethyl phthalate	4

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	Dimethyl phthalate	4
(Continued)	Diphenylamine	4
	Ethyl methanesulfonate	4
	Fluoranthene	4
	Fluorene	4
	Hexachlorobenzene	4
	Hexachlorobutadiene	+
	Hexachlorocyclopentadiene	4
	Hexachloroethane	4
	Indeno(1.2,3-cd)pyrene	4
	Isophorone	4
	Methyl methanesulfonate	4
	N-Nitroso-di-n-butylamine	4
	N-Nitroso-di-n-propylamine	4
	N-Nitrosodiphenylamine	4
	N-Nitrosopiperidine	4
	Naphthalene	4
	Nitrobenzene	4
	Pentachlorobenzene	1
	Pentachloronitrobenzene	1
	Pentachlorophenol	4
	Phenacetin	-1
	Phenanthrene	4
	Phenol	4
	Pronamide	4
	Pyrene	4
	a.a-Dimethylphenethyl-amine	4
	bis(2-Chloroethoxy)methane	4
	bis(2-Chloroethyl) ether	4
	p-Dimethylaminoazobenzene	4
olatile Organics	1.1.1.2-Tetrachloroethane	1
	1.1.1-Trichloroethane	4
	1.1.2.2-Tetrachloroethane	4
	1.1.2-Trichloroethane	1
	1.1-Dichloroethane	1
	1.1-Dichloroethene	1
	1.2.3-Trichloropropane	1
	1.2-Dichloroethane	.1
	1.2-Dichloropropane	+
	2-Butanone (MEK)	+ +
	2-Chloroethyl vinyl ether	+ +
	2-Hexanone	+
	4-Methyl-2-pentanone (MIBK)	1
	Acrolem	

Chemical Group	Chemical	Number of Samples
Volatile Organics	Acrylonitrile	4
(Continued)	Benzene	4
	Bromodichloromethane	4
	Bromoform	4
	Bromomethane	1
	Carbon disulfide	4
	Carbon tetrachloride	4
	Chlorobenzene	4
	Chloroethane	4
	Chloroform	1
	Chloromethane	4
	Dibromochloromethane	4
	Dibromomethane	1
	Dichlorodifluoromethane	4
	Ethanol	2
	Ethyl methacrylate	4
	Ethylbenzene	4
	Iodomethane	4
	Methylene chloride	4
	Styrene	4
	Tetrachloroethene	4
	Toluene	4
	Trichloroethene	-1
	Trichlorofluoromethane	4
	Vinyl acetate	4
	Vinyl chloride	1
	Xylenes (total)	4
	cis-1,3-Dichloropropene	1
	trans-1,2-Dichloroethene	4
	trans-1,3-Dichloropropene	1
	trans-1,4-Dichloro-2-butene	4

Chemical Group	Chemical	Number of Samples
Pesticides/PCBS	4,4'-DDD	28
	4,4'-DDT	28
	Aroclor 1016	28
	Aroclor 1221	28
***	Aroctor 1232	28
	Aroclor 1242	28
	Aroclor 1248	28
	Aroclor 1260	28
	Dieldrin	28
	Endosulfan I	28
	Endosulfan II	28
	Endosulfan sulfate	28
	Endrin	28
	Heptachlor	28
	Methoxychlor	28
1 t	Toxaphene	28
	alpha-BHC	28
	alpha-Chlordane	28
	beta-BHC	28
	delta-BHC	28
	gamma-BHC (Lindane)	28
	gamma-Chlordane	28
Semivolatile Organics	1.2.4.5-Tetrachloro-benzene	28
	1.2,4-Trichlorobenzene	28
	1,3-Dichlorobenzene	28
	1,4-Dichlorobenzene	28
	1-Chloronaphthalene	28
	1-Naphthylamine	28
and the second s	2.2'-oxybis(1-Chloropropane)	28
	2.3.4.6-Tetrachlorophenol	28
	2,4,5-Trichlorophenol	28
	2.4.6-Trichlorophenol	28
	2.4-Dichlorophenol	28
	2.4-Dimethylphenol	28
	2,4-Dinitrophenol	28
	2.4-Dinitrotoluene	28
	2,6-Dichlorophenol	28
	2.6-Dinitrotoluene	28
	2-Chloronaphthalene	28
	2-Chlorophenol	28
	2-Methylphenol	28
	2-Naphthylamine	28
	2-Nitrophenol	28
	2-Picoline	28
	3.3'-Dichlorobenzidine	28
	3-Methylcholanthrene	28

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	3-Nitroaniline	28
Continued)	3/4-Methylphenol	28
	4.6-Dinitro-2-methylphenol	28
	4-Aminobiphenyl	28
	4-Bromophenyl phenyl ether	28
	4-Chloro-3-methylphenol	28
	4-Chloroaniline	28
	4-Chlorophenyl phenyl ether	28
	4-Nitroaniline	28
	4-Nitrophenol	28
	7.12-Dimethylbenz(a)-anthracene	28
	Acetophenone	28
	Aniline	28
	Azobenzene	28
	Benzoic acid	28
	Benzyl alcohol	28
	Butyl benzyl phthalate	28
	Diethyl phthalate	28
	Dimethyl phthalate	28
	Diphenylamine	28
	Ethyl methanesulfonate	28
	Hexachlorobenzene	28
	Hexachlorobutadiene	28
	Hexachlorocyclopentadiene	28
	Hexachloroethane	28
	Isophorone	28
	Methyl methanesulfonate	28
	N-Nitroso-di-n-butylamine	28
	N-Nitroso-di-n-propylamine	28
	N-Nitrosodiphenylamine	28
	N-Nitrosopiperidine	28
	Nitrobenzene	28
	Pentachlorobenzene	28
	Pentachloronitrobenzene	28
	Pentachlorophenol	28
	Phenacetin	28
	Phenol	28
	Pronamide	28
	a.a-Dimethylphenethyl-amine	28
	bis(2-Chloroethoxy)methane	28
	bis(2-Chloroethyl) ether	28
	p-Dimethy laminoazobenzene	28
olatile Organics	1.1.1.2-Tetrachloroethane	28
	1.1.1-Trichloroethane	28
	1.1.2.2-Tetrachloroethane	28
	1.1.2-Trichloroethane	28

Chemical Group	Chemical	Number of Samples
Volatile Organics	1.1-Dichloroethane	28
(Continued)	1.1-Dichloroethene	28
	1.2.3-Trichloropropane	28
	1,2-Dichloroethane	28
	1,2-Dichloropropane	28
	2-Butanone (MEK)	28
	2-Chloroethyl vinyl ether	28
	2-Hexanone	28
	4-Methyl-2-pentanone (MIBK)	28
	Acrolein	25
	Acrylonitrile	28
	Benzene	28
	Bromodichloromethane	28
	Bromoform	28
	Bromomethane	28
	Carbon tetrachloride	28
	Chlorobenzene	28
	Chloroethane	28
	Chloroform	28
	Dibromochloromethane	28
	Dibromomethane	28
	Dichlorodifluoromethane	
	Ethanol	28
	Ethyl methacrylate	25
	Iodomethane	28
	Tetrachloroethene	28
	Trichloroethene	28
	Trichlorofluoromethane	28
	Vinyl acetate	28
	Xylenes (total)	28
· · · · · · · · · · · · · · · · · · ·	cis-1.3-Dichloropropene	28
		28
	trans-1,2-Dichloroethene	28
	trans-1.3-Dichloropropene	28
	trans-1.4-Dichloro-2-butene	28

Chemical Group	Chemical	Number of Samples
Metals	Selenium	4
	Thallium	4
Pesticides/PCBs	4.4'-DDD	4
	4.4'-DDE	4
	4,4'-DDT	1
	Aldrin	4
	Aroclor 1016	4
	Aroclor 1221	4
	Aroclor 1232	-1
	Aroclor 1242	4
	Aroclor 1248	4
	Aroclor 1260	4
	Dieldrin	4
	Endosulfan I	4
	Endosulfan II	1
	Endosulfan sulfate	4
	Endrin	1
	Heptachlor	4
	Heptachlor epoxide	4
	Methoxychlor	4
	Toxaphene	1
	alpha-BHC	1
	alpha-Chlordane	1
	beta-BHC	4
	delta-BHC	1
	gamma-BHC (Lindane)	1
	gamma-Chlordane	1
emivolatile Organics	1.2.4,5-Tetrachloro-benzene	4
	1.2.4-Trichlorobenzene	4
	1.2-Dichlorobenzene	4
	1.3-Dichlorobenzene	4
	1.4-Dichlorobenzene	4
	1-Chloronaphthalene	4
	1-Naphthylamine	1
	2.2'-oxybis(1-Chloropropane)	1
	2.3.4,6-Tetrachlorophenol	1
	2.4.5-Trichlorophenol	4
	2,4,6-Trichlorophenol	4
	2.4-Dichlorophenol	4
	2.4-Dimethylphenol	1
	2.4-Dinitrophenol	1
	2.4-Dinitrotoluene	1
	2.6-Dichlorophenol	4
	2.6-Dinitrotoluene	1
	2-Chloronaphthalene	1
	2-Chlorophenol	.1

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	2-Methylphenol	4
Continued)	2-Naphthylamine	4
	2-Nitrophenol	4
	2-Picoline	4
	3.3'-Dichlorobenzidine	4
	3-Methylcholanthrene	4
	3-Nitroaniline	4
	3/4-Methylphenol	4
	4.6-Dinitro-2-methylphenol	4
	4-Aminobiphenyl	4
	4-Bromophenyl phenyl ether	1
	4-Chloro-3-methylphenol	4
	4-Chloroaniline	4
	4-Chlorophenyl phenyl ether	4
	4-Nitroaniline	-4
	4-Nitrophenol	4
	7.12-Dimethylbenz(a)-anthracene	4
	Acenaphthylene	4
	Acetophenone	4
	Aniline	4
	Azobenzene	4
	Benzidine	4
	Benzoic acid	1
	Benzyl alcohol	4
	Di-n-butyl phthalate	4
	Diethyl phthalate	4
	Dimethyl phthalate	4
	Dipheny lamine	4
	Ethyl methanesulfonate	4
	Hexachlorobenzene	4
	Hexachlorobutadiene	4
	Hexachlorocyclopentadiene	4
	Hexachloroethane	1
	Isophorone	1
	Methyl methanesulfonate	1
	N-Nitroso-di-n-butylamine	1
	N-Nitroso-di-n-propylamine	1
	N-Nitrosodiphenylamine	1
	N-Nitrosopiperidine	
	Nitrobenzene	1
	Pentachlorobenzene	1
** *** *** *** *** *** *** *** *** ***	Pentachloronitrobenzene	4
***	Pentachlorophenol	1
	Phenacetin	1
	Phenol	1
	Pronamide	1

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	a,a-Dimethylphenethyl-amine	4
(Continued)	bis(2-Chloroethoxy)methane	4
	bis(2-Chloroethyl) ether	4
	p-Dimethylaminoazobenzene	4
Volatile Organics	1.1.1.2-Tetrachloroethane	4
	1.1.1-Trichloroethane	4
	1.1.2.2-Tetrachloroethane	4
	1.1.2-Trichloroethane	4
	1.1-Dichloroethane	1
	1.1-Dichloroethene	4
	1.2.3-Trichloropropane	4
	1,2-Dichloroethane	4
	1.2-Dichloropropane	1
	2-Butanone (MEK)	4
	2-Chloroethyl vinyl ether	1
	2-Hexanone	4
	4-Methyl-2-pentanone (MIBK)	4
	Acrolein	4
	Acrylonitrile	4
	Benzene	4
	Bromodichloromethane	1
	Bromoform	4
	Bromomethane	4
	Carbon disulfide	1
	Carbon tetrachloride	4
	Chlorobenzene	1
	Chloroethane	4
	Chloroform	1
	Chloromethane	1
	Dibromochloromethane	1
	Dibromomethane	-1
	Dichlorodifluoromethane	4
	Ethanol	4
	Ethyl methacrylate	1
	Ethylbenzene	4
	Iodomethane	4
	Styrene	1
	Tetrachloroethene	4
	Toluene	4
	Trichloroethene	1
	Trichlorofluoromethane	1
	Vinyl acetate	4
	Vinyl chloride	4
	Xylenes (total)	1
	cis-1.3-Dichloropropene	1
	trans-1.2-Dichloroethene	+

Chemical Group	Chemical	Number of Samples	
Volatile Organics	trans-1.3-Dichloropropene	1	
(Continued)	trans-1.4-Dichloro-2-butene	4	

Chemical Group	Chemical	Number of Samples
Pesticides/PCBs	4,4'-DDE	31
	4.4'-DDT	31
	Aroclor 1016	31
	Aroclor 1221	31
	Aroctor 1232	31
	Aroclor 1242	31
	Aroclor 1248	31
· · · · · · · · · · · · · · · · · · ·	Dieldrin	31
	Endosulfan I	31
	Endosulfan sulfate	31
	Endrin	31
	Heptachlor epoxide	31
	Methoxychlor	31
	Toxaphene	31
· · · · · · · · · · · · · · · · · · ·	alpha-BHC	31
	beta-BHC	31
	delta-BHC	31
	gamma-BHC (Lindane)	31
Semivolatile Organics	1,2,4,5-Tetrachloro-benzene	31
	1,2,4-Trichlorobenzene	31
	1-Naphthylamine	31
	2,2'-oxybis(1-Chloropropane)	31
	2.3.4.6-Tetrachlorophenol	31
	2.4.5-Trichlorophenol	31
	2.4.6-Trichlorophenol	31
	2.4-Dichlorophenol	31
· · · · · · · · · · · · · · · · · · ·	2.4-Dinitrophenol	31
	2,4-Dinitrotoluene	31
	2.6-Dichlorophenol	31
	2.6-Dinitrotoluene	31
	2-Chlorophenol	31
	2-Methylphenol	31
	2-Naphthylamine	31
	2-Nitrophenol	31
	2-Picoline	31
	3.3'-Dichlorobenzidine	
The second secon	3-Nitroaniline	31
	3/4-Methylphenol	31
		31
	4.6-Dinitro-2-methylphenol	31
	4-Aminobiphenyl	31
	4-Bromophenyl phenyl ether	31
	4-Chloro-3-methylphenol	31
	4-Chloroaniline	31
	4-Chlorophenyl phenyl ether	31
	4-Nitroaniline	31
	4-Nitrophenol	31

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	7,12-Dimethylbenz(a)-anthracene	31
Continued)	Acenaphthylene	31
	Aniline	31
	Azobenzene	31
	Benzidine	31
	Benzył alcohol	31
	Di-n-octyl phthalate	31
	Diethyl phthalate	31
	Dimethyl phthalate	31
	Diphenylamine	31
	Ethyl methanesulfonate	31
	Hexachlorobenzene	31
	Hexachlorobutadiene	31
	Hexachlorocyclopentadiene	31
	Hexachloroethane	31
	Isophorone	31
	Methyl methanesulfonate	31
	N-Nitroso-di-n-butylamine	31
	N-Nitroso-di-n-propylamine	31
	N-Nitrosodiphenylamine	31
	N-Nitrosopiperidine	31
	Nitrobenzene	31
	Pentachlorobenzene	31
	Pentachloronitrobenzene	31
	Pentachlorophenol	31
	Phenacetin	31
	Phenol	31
	Pronamide	31
	a,a-Dimethylphenethyl-amine	31
	bis(2-Chloroethoxy)methane	31
	bis(2-Chloroethyl) ether	31
	p-Dimethy laminoazobenzene	31
olatile Organics	1.1.1.2-Tetrachloroethane	31
	1.1.1-Trichloroethane	31
	1.1.2-Trichloroethane	31
	1.1-Dichloroethene	31
	1,2,3-Trichloropropane	31
	1,2-Dichloroethane	31
	1.2-Dichloropropane	31
	2-Chloroethyl vinyl ether	31
	2-Hexanone	31
7. T.	4-Methyl-2-pentanone (MIBK)	31
	Acrolein	31
	Acrylonitrile	31
	Bromodichloromethane	31
	Bromoform	31

Chemical Group	Chemical	Number of Samples
Volatile Organics	Bromomethane	31
(Continued)	Carbon tetrachloride	31
	Chloroethane	31
	Chloroform	31
	Dibromochloromethane	31
	Dibromomethane	31
	Dichlorodifluoromethane	31
	Ethanol	31
	Ethyl methacrylate	31
	Iodomethane	31
	Tetrachloroethene	31
	Trichlorofluoromethane	31
	Vinyl acetate	31
	cis-1,3-Dichloropropene	31
	trans-1,2-Dichloroethene	31
	trans-1,3-Dichloropropene	31
	trans-1,4-Dichloro-2-butene	31

Chemical Group	Chemical	Number of Samples
Metals	Selenium	9
Pesticides/PCBs	4,4'-DDD	9
	4,4'-DDE	9
	4,4'-DDT	9
	Aldrin	9
	Aroclor 1016	9
	Aroclor 1221	9
	Aroclor 1232	9
	Aroclor 1242	9
	Aroclor 1248	9
	Aroclor 1254	9
	Aroclor 1260	9
	Endosulfan I	9
	Endosulfan sulfate	9
	Endrin	9
	Heptachlor	9
	Heptachlor epoxide	9
	Methoxychlor	9
	Toxaphene	9
	alpha-BHC	9
	alpha-Chlordane	9
	beta-BHC	9
	delta-BHC	9
	gamma-BHC (Lindane)	9
	gamma-Chlordane	9
emivolatile Organics	1.2.4.5-Tetrachloro-benzene	9
	1.2.4-Trichlorobenzene	9
	1,2-Dichlorobenzene	9
	1,3-Dichlorobenzene	9
	1-Naphthylamine	9
	2,2'-oxybis(1-Chloropropane)	9
	2.3.4.6-Tetrachlorophenol	9
· · · · · · · · · · · · · · · · · · ·	2,4,5-Trichlorophenol	9
	2.4.6- Frichlorophenol	9
	2,4-Dichlorophenol	9
	2,4-Dimethylphenol	9
	2.4-Dinitrophenol	9
	2.4-Dinitrotoluene	9
	2.6-Dichlorophenol	9
	2.6-Dinitrotoluene	9
	2-Chloronaphthalene	9
	2-Chlorophenol	9
	2-Methylphenol	9
	2-Naphthylamine	9
	2-Nitrophenol	9
	2-Picoline	9

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	3,3'-Dichlorobenzidine	9
Continued)	3-Methylcholanthrene	9
	3-Nitroaniline	9
	3/4-Methylphenol	9
	4.6-Dinitro-2-methylphenol	9
	4-Aminobiphenyl	9
	4-Bromophenyl phenyl ether	9
	4-Chloro-3-methylphenol	9
	4-Chloroaniline	9
	4-Chlorophenyl phenyl ether	9
	4-Nitroaniline	9
	4-Nitrophenol	9
	7.12-Dimethylbenz(a)-anthracene	9
	Acenaphthene	9
	Acenaphthylene	9
	Acetophenone	9
	Aniline	9
	Anthracene	9
	Azobenzene	9
	Benzidine	9
	Benzo(a)anthracene	9
	Benzo(a)pyrene	9
	Benzo(g,h,i)perylene	9
	Benzo(k)fluoranthene	9
	Benzoic acid	9
	Benzyl alcohol	9
	Butyl benzyl phthalate	9
	Di-n-butyl phthalate	9
	Di-n-octyl phthalate	9
	Dibenz(a,h)anthracene	9
	Dibenzofuran	9
	Diethyl phthalate	9
	Dimethyl phthalate	9
	Diphenylamine	9
	Ethyl methanesulfonate	9
	Fluorene	9
	Hexachlorobenzene	ý
	Hexachlorobutadiene	9
	Hexachlorocyclopentadiene	9
	Hexachloroethane	9
	Indeno(1,2,3-ed)pyrene	9
	Methyl methanesulfonate	9
	N-Nitroso-di-n-butylamine	9
	N-Nitroso-di-n-propylamine	9
	N-Nitrosodiphenylamine	9
	N-Nitrosopiperidine	()

Chemical Group	Chemical	Number of Samples
Semivolatile Organics	Naphthalene	9
Continued)	Nitrobenzene	9
	Pentachlorobenzene	9
	Pentachloronitrobenzene	9
	Pentachlorophenol	9
	Phenacetin	9
	Phenol	9
	Pronamide	9
	a,a-Dimethylphenethyl-amine	9
	bis(2-Chloroethoxy)methane	9
	bis(2-Chloroethyl) ether	9
	p-Dimethylaminoazobenzene	9
olatile Organics	1.1.1.2-Tetrachloroethane	9
	1.1.1-Trichloroethane	9
	1.1.2.2-Tetrachloroethane	9
	1,1.2-Trichloroethane	9
	1.1-Dichloroethane	9
7. The second se	1,1-Dichloroethene	9
	1,2,3-Trichloropropane	9
	1.2-Dichloroethane	9
	1.2-Dichloropropane	9
	2-Chloroethyl vinyl ether	9
	2-Hexanone	9
	4-Methyl-2-pentanone (MIBK)	9
	Acrolein	9
	Acrylonitrile	9
	Benzene	9
	Bromodichloromethane	9
	Bromoform	9
	Bromomethane	9
	Carbon tetrachloride	')
M	Chloroethane	9
	Chloroform	9
	Chloromethane	9
H THE TAX TO THE TAX T	Dibromochloromethane	9
	Dibromomethane	()
	Dichlorodifluoromethane	9
	Ethanol	9
	Ethyl methacrylate	9
	Ethylbenzene	9
	lodomethane	9
	Styrene	9
	Tetrachloroethene	9
	Toluene	9
	Frichloroethene	9
	Frichlorotluoromethane	9

Chemical Group	Chemical	Number of Samples	
Volatile Organics	Vinyl acetate	9	
(Continued)	Vinyl chloride	9	
	Xylenes (total)	9	
	cis-1.3-Dichloropropene	9	
	trans-1,2-Dichloroethene	9	
	trans-1.3-Dichloropropene	9	
	trans-1.4-Dichloro-2-butene	9	

CHEMICALS DETECTED AT LOW FREQUENCY AND CONCENTRATION ON-BASE WEST SOLDIER CREEK SEDIMENTS

Group	Chemical	Maximum Concentration (mg/kg)	Frequency
Pesticides/PCBs	4,4'-DDE	0.0085	1/28
	Heptachlor epoxide	0.0028	1/28
Semivolatile Organics	Acenaphthylene*	0.043	1/28
	Di-butyl phthalate	0.2	1/28
	Di-n-octylphthalate	0.5	1/28
Volatile Organics	Carbon Disulfide	0.0057	1/28
	Chloromethane	0.004	1/28
	Vinyl Chloride	0.0028	1/28

^{*}Pyrene was used as a surrogate compound for RBC screening of acenaphthylene. The maximum detected concentration of acenaphthylene was below the Region III RBC for industrial soils. Therefore, acenaphthylene was not retained as a COC.

^{**}Maximum detected concentration exceeded the Region III RBC concentration for industrial soils. Therefore, the chemical is retained as a COC.

CHEMICALS DETECTED AT LOW FREQUENCY AND CONCENTRATION ON-BASE EAST SOLDIER CREEK SEDIMENTS

Group	Chemical	Maximum Concentration (mg/kg)	Frequency
Pesticides/PCBs	Heptachlor	0.0081	1/31
Semivolatile Organics	1,3-Dichlorobenzene	0.38	1/31
Volatile Organics	Vinyl chloride	0.0013	1/31

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS ON-BASE WEST SOLDIER CREEK SURFACE WATER

-	Surface Water Concentration ^a (mg/L)		RDA ^c (mg/day)
Chemical		Daily Ingestion ^b (mg/day)	
Calcium	62.9	31.45	1200
Chromium	0.0016	0.0008	0.2
Copper	0.0072	0.0036	3
Magnesium	14.3	7.15	400
Manganese	0.24	0.12	5
Molybdenum	0.02	0.01	0.25
Potassium	10.1	5.05	390-780 ^d
Selenium	0.0018	0.0009	0.075
Sodium	16.8	8.4	1000°
Zinc	0.036	0.018	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 0.5 L/day of surface water.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

TABLE 2-13

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS OFF-BASE WEST SOLDIER CREEK SURFACE WATER

	Surface Water	Daile Landing b	RDA ^c
Chemical	Concentration* (mg/L)	Daily Ingestion ^b (mg/day)	(mg/day)
Calcium	59.1	29.55	1200
Chromium	0.0049	0.00245	0.2
Copper	0.016	0.008	3
Magnesium	27.5	13.75	400
Manganese	0.0042	0.0021	5
Molybdenum	0.0083	0.00415	0.25
Potassium	1.6	0.8	390-780 ^d
Selenium	0.001	0.0005	0.075
Sodium	29.8	14.9	1000°
Zinc	0.042	0.021	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 0.5 L/day of surface water.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

TABLE 2-14

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS ON-BASE EAST SOLDIER CREEK SURFACE WATER

Chemical	Surface Water Concentration ^a (mg/L)	Daily Ingestion ^b (mg/day)	RDA ^c (mg/day)
Calcium	72.4	36.2	1,200
Chromium (total)	0.045	0.0225	0.2
Chromium VI	0.01	0.005	0.2
Copper	0.51	0.255	3
Magnesium	36.1	18.05	400
Manganese	0.097	0.0485	5
Molybdenum	0.0031	0.00155	0.25
Potassium	2.7	1.35	390-780 ^d
Selenium	0.0042	0.0021	0.075
Sodium	29.3	14.65	1,000°
Zinc	0.075	0.0375	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 0.5 L/day of surface water.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS OFF-BASE EAST SOLDIER CREEK SURFACE WATER

Chemical	Surface Water Concentration ^a (mg/L)	Daily Ingestion ^b (mg/day)	RDA ^c (mg/day)
Calcium	64.8	32.4	1,200
Chromium	0.0084	0.0042	0.2
Copper	0.02	0.01	3
Magnesium	32.2	16.1	400
Manganese	0.06	0.03	5
Molybdenum	0.0025	0.00125	0.25
Potassium	2.4	1.2	390-780 ^d
Selenium	0.0023	0.00115	0.075
Sodium	22.4	11.2	1,000°
Zinc	0.022	0.011	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 0.5 L/day of surface water.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS ON-BASE WEST SOLDIER CREEK SEDIMENTS

	Sediment	Daily	
	Concentration	Ingestion	RDA
Chemical	(mg/kg)	(mg/day)	(mg/day)
Calcium	50900	5.09	1,200
Copper	2010	0.201	3
Iron	24400	2.44	30
Magnesium	23400	2.34	400
Manganese	7430	0.7+3	5
Molybdenum	262	0.0262	0.25
Potassium	3520	0.352	390-780 ^d
Selenium	10.3	0.00103	0.075
Sodium	1090	0.109	1,000°
Zinc	2310	0.231	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 100 mg of sediment per day.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS OFF-BASE WEST SOLDIER CREEK SEDIMENTS

	Sediment	Daily	
Chemical	Concentration ⁴ (mg/kg)	Ingestion ^b (mg/day)	RDA ^c (mg/day)
Calcium	112000	11.2	1,200
Chromium	115	0.0115	0.2
Copper	17.2	0.00172	3
Iron	12500	1.25	30
Magnesium	7800	0.78	400
Manganese	934	0.0934	5
Molybdenum	4.9	0.00049	0.25
Potassium	696	0.0696	390-780 ^d
Sodium	242	0.0242	1,000°
Zinc	81.1	0.00811	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 100 mg of sediment per day
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS ON-BASE EAST SOLDIER CREEK SEDIMENTS

	Sediment Concentration* (mg/kg)	Daily	RDA° (mg/day)
Chemical		Ingestion ^b (mg/day)	
Calcium	121000	12.1	1,200
Copper	581	0.0581	3
Iron	14400	1.44	30
Magnesium	6920	0.692	400
Manganese	1830	0.183	5
Molybdenum	41.8	0.00418	0.25
Potassium	1400	0.14	390-780 ^d
Selenium	7.5	0.00075	0.075
Sodium	177	0.0177	1,000°
Zinc	671	0.0671	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 100 mg of sediment per day.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

ESSENTIAL NUTRIENTS EXCLUDED AS POTENTIAL COCS OFF-BASE EAST SOLDIER CREEK SEDIMENTS

	Sediment	Daily	RDA° (mg/day)
Chemical	Concentration ¹ (mg/kg)	Ingestion ^b (mg/day)	
Calcium	141000	14.1	1,200
Chromium	220	0.022	0.2
Copper	34.2,	0.00342	3
Iron	18500	1.85	30
Magnesium	27100	2.71	400
Manganese	1890	0.189	5
Molybdenum	7.2	0.00072	0.25
Potassium	964	0.0964	390-780 ^d
Sodium	159	0.0159	1,000°
Zinc	91.5	0.00015	15

- a. Maximum detected concentration.
- b. Assumes an individual who ingests 100 mg of sediment per day.
- c. Recommended Daily Allowance established by the National Research Council (1989).
- d. Recommended potassium intake is based on body weight. For a small child weighing 10kg, the recommended intake is 390-780 mg/day.
- e. Sodium is recognized as an essential nutrient, but there is no RDA value. Ingestion of less than 1,000 mg/day is considered a sodium-restricted diet. The average dietary intake of sodium in the U.S. is greater than 10,000 mg/day (Nelson, 1992).

CHEMICALS DETECTED AT BACKGROUND LEVELS ON-BASE WEST SOLDIER CREEK SURFACE WATER

Chemical	Background Concentration ^a (mg/L)	2x Background Concentration (mg/L)	Maximum Detected Concentration (mg/L)
Aluminum	4.37	8.74	0.73
Barium	0.739	1.478	0.3
Iron	2.96	5.92	1.9
Lead	0.012	0.024	0.0018

Note:

a. Samples from off-base Crutcho Creek were used to identify background concentrations.

CHEMICALS DETECTED AT BACKGROUND LEVELS OFF-BASE WEST SOLDIER CREEK SURFACE WATER

Chemical	Background Concentration ^a (mg/L)	2x Background Concentration (mg/L)	Maximum Detected Concentration (mg/L)
Aluminum	4.37	8.74	0.044
Barium	0.739	1.478	0.45
Iron	2.96	5.92	0.066
Lead	0.012	0.024	0.0008

Note:

a. Samples from off-base Crutcho Creek were used to identify background concentrations.

CHEMICALS DETECTED AT BACKGROUND LEVELS ON-BASE EAST SOLDIER CREEK SURFACE WATER

Chemical	Background Concentration ^a (mg/L)	2x Background Concentration (mg/L)	Maximum Detected Concentration (mg/L)
Aluminum	4.37	8.74	0.49
Barium	0.739	1.478	0.62
Iron	2.96	5.92	1
Lead	0.012	0.024	0.015

Note:

a. Samples from off-base Crutcho Creek were used to identify background concentrations.

CHEMICALS DETECTED AT BACKGROUND LEVELS OFF-BASE EAST SOLDIER CREEK SURFACE WATER

Chemical	Background Concentration ^a (mg/L)	2x Background Concentration (mg/L)	Maximum Detected Concentration (mg/L)
Aluminum	4.37	8.74	0.16
Barium	0.739	1.478	0.53
Iron	2.96	5.92	0.4
Lead	0.012	0.024	0.0021

Note:

CHEMICALS DETECTED AT BACKGROUND LEVELS ON-BASE WEST SOLDIER CREEK SEDIMENTS

Chemical	Background Concentration ^a (mg/kg)	2 x Background Concentration (mg/kg)	Maximum Detected Concentration (mg/kg)
Aluminum	17100	34200	22700
Arsenic	14	28	9.7
Barium	2620	5240	771
Iron	70600	141200	24400

Note

CHEMICALS DETECTED AT BACKGROUND LEVELS OFF-BASE WEST SOLDIER CREEK SEDIMENTS

Chemical	Background Concentration ^a (mg/kg)	2x Background Concentration (mg/kg)	Maximum Detected Concentration (mg/kg)
Aluminum	17100	34200	2810
Arsenic	14	28	1.8
Barium	2620	5240	631
Tickel	110	220	150

Note

CHEMICALS DETECTED AT BACKGROUND LEVELS ON-BASE EAST SOLDIER CREEK SEDIMENTS

Chemical	Background Concentration ^a (mg/kg)	2x Background Concentration (mg/kg)	Maximum Detected Concentration (mg/kg)
Aluminum	17100	34200	9210
Arsenic	. 14	28	15.7
Barium	2620	5240	2370

Note:

CHEMICALS DETECTED AT BACKGROUND LEVELS OFF-BASE EAST SOLDIER CREEK SEDIMENTS

Chemical	Background Concentration ^a (mg/kg)	2x Background Concentration (mg/kg)	Maximum Detected Concentration (mg/kg)
Aluminum	17100	34200	6830
Arsenic	14	28	4.7
Barium	2620	5240	3200
Lead	44	88	47.9
Nickel	110	220	96.5
Silver	7	14	5.8

Note:

CHEMICALS OF CONCERN ON-BASE WEST SOLDIER CREEK SURFACE WATER

Chemical	Maximum Detected Concentration (mg/L)	Minimum Detected Concentration (mg/L)	Frequency of Detection
Metals			
Antimony	0.00055	0.00013	2/3
Arsenic	0.0038	0.0038	1/3
Cadmium	0.00088	0.000074	2/3
Cobalt	0.0018	0.00017	3/3
Nickel	0.052	0.0068	3/3
Vanadium	0.0049	0.0008	3/3
Semivolatile Organics			
bis(2-Ethylhexyl)phthalate	0.0043	0.0043	1/3
Volatile Organics			.,,,
Acetone	0.0037	0.0037	1/3
Chloromethane	0.0011	0.0011	1/3
Styrene	0.0034	0.0034	1/3

CHEMICALS OF CONCERN OFF-BASE WEST SOLDIER CREEK SURFACE WATER

Chemical	Maximum Detected Concentration (mg/L)	Minimum Detected Concentration (mg/L)	Frequency of Detection
Metals			
Antimony	0.00044	0.00028	2/4
Cadmium	0.00052	0.0002	4/4
Cobalt	0.00036	0.000026	4/4
Nickel	0.016	0.00026	4/4
Vanadium	0.016	0.0055	3/4
Volatile Organics			
Acetone	0.0055	0.0055	1/4
Bromomethane	0.0072	0.0072	1/4
Chloromethane	0.0036	0.0021	2/4
Iodomethane	0.0018	0.0012	2/4
Methylene chloride	0.0014	0.0014	1/4

CHEMICALS OF CONCERN ON-BASE EAST SOLDIER CREEK SURFACE WATER

Chemical	Maximum Detected Concentration (mg/L)	Minimum Detected Concentration (mg/L)	Frequency of Detection
Metals			
Antimony	0.00025	0.00004	6/18
Arsenic	0.0027	0.0022	3/18
Cadmium	0.016	0.000073	15/18
Cobalt	0.00096	0.0001	18/18
Nickel	0.02	0.0021	18/18
Silver	0.00062	0.00013	2/18
Vanadium	0.018	0.0084	18/18
Pesticides/PCBs			
Aroclor 1254	0.00058	0.00058	1/18
Semivolatile Organics			
bis(2-Ethylhexyl)phthalate	0.012	0.0029	5/18
Volatile Organics			
Acetone	0.012	0.003	8/18
Bromoform	0.0016	0.0016	1/18
Dibromochloromethane	0.0018	0.0018	1/18
Ethanol	0.041	0.041	1/18
Methylene chloride	0.0013	0.001	4/18

CHEMICALS OF CONCERN OFF-BASE EAST SOLDIER CREEK SURFACE WATER

Chemical	Maximum Detected Concentration (mg/L)	Minimum Detected Concentration (mg/L)	Frequency of Detection
Metals			
Antimony	0.00029	0.00022	2/4
Arsenic	0.0028	0.0023	4/4
Cadmium	0.0013	0.0006	3/3
Cobalt	0.0004	0.00033	3/3
Nickel	0.012	0.0054	3/3
Vanadium	0.016	0.0088	3/3
Semivolatile Organics			
bis(2-Ethylhexyl)phthalate	0.005	0.0041	2/4
Volatile Organics			
Acetone	0.0041	0.0041	1/4

CHEMICALS OF CONCERN ON-BASE WEST SOLDIER CREEK SEDIMENTS

	Maximum Detected Concentration (mg/kg)	Minimum Detected Concentration (mg/kg)	Frequency of Detection
Chemical			
Metals		3 3	
Antimony	11	4.8	2/28
Beryllium	1.7	0.29	27/28
Cadmium	210	0.57	17/28
Chromium	. 4000	11	28/28
Cobalt	170	2.4	28/28
Lead	930	4.9	28/28
Mercury	0.55	0.016	14/28
Nickel	6500	6.6	28/28
Silver	730	0.43	19/28
Thallium	130	14	13/28
Vanadium	120	7.1	28/28
Pesticides/PCBs			20/20
4,4'-DDE*	0.0085	0.0085	1/28
Aldrin	0.0067	0.0025	2/28
Aroclor 1254	82	0.063	10/28
Heptachlor epoxide*	0.0028	0.0028	1/28
Semivolatile Organics			1. 20
,2-Dichlorobenzene	1.6	1.2	2/28
-Methylnaphthalene	0.85	().41	2/28
Acenaphthene	1.1	0.044	3/28
Anthracene	1.6	0.043	5/28
Benzidine	0.22	0.22	1/28
Benzo(a)anthracene	5.7	0.046	16/28
Benzo(a)pyrene	5.8	0.05	17.28
Benzo(b)fluoranthene	5.6	0.052	17/28
Benzo(g.h.i)perylene	5.3	0.046	16/28
Benzo(k)fluoranthene	9.5	0.053	17/28
Thry sene	-	0.068	17/28
Di-n-butyl phthalate*	0.2	0.2	1/28
Dibenz(a,h)anthracene	1.6	0.057	6:28
Dibenzofuran	1.1	0,79	2/28
luoranthene	21	0.074	18/28
luorene	1.4		2:28
ndeno(1,2,3-cd)pyrene	4.7	().047	15/28
aphthalene	2.1	1.7	2/28
henanthrene	14	0.041	17/28
yrene	12	0.079	18/28
s(2-Ethylhexyl)phthalate	0.14	0.048	6.28
Volatile Organics		0.00	00
cetone	() ()89	0.0057	4/28
arbon disulfide*	0.0057	0.0057	1.28
hloromethane*	0.004	0.004	1.28
thylbenzene	0.053	0.0019	4.28
fethylene chloride	0.0018	0.0014	4 28

CHEMICALS OF CONCERN ON-BASE WEST SOLDIER CREEK SEDIMENTS

Chemical	Maximum Detected Concentration (mg/kg)	Minimum Detected Concentration (mg/kg)	Frequency of Detection
Styrene	0.5	0.0024	6/28
Toluene	0.034	0.0024	4/28
Vinyl chloride*	0.0028	0.0028	1/28

^{*}These chemicals were only detected in the 0.5-foot level. They are evaluated in the current exposure scenario only because when combined with all depths for the future exposure scenario, they were eliminated based on low frequency of detection and low concentration.

CHEMICALS OF CONCERN OFF-BASE WEST SOLDIER CREEK SEDIMENTS

Chemical	Maximum Detected Concentration (mg/kg)	Minimum Detected Concentration (mg/kg)	Frequency of Detection
Metals			occensi
Antimony	4.4	4,4	1:4
Beryllium	0.51	0.27	2/4
Cadmium	. 17	1.2	4/4
Chromium (VI)	8.4	8.4	1/4
Cobalt	7.3	6.1	4/4
Lead	250	7.1	4/4
Mercury	0.055	0.013	2/4
Silver	16	0.56	4/4
Vanadium	23	10	4/4
Pesticides/PCBs			
Aroclor 1254	6	0.23	4/4
Semivolatile Organics			***
2-Methylnaphthalene	0.28	0.28	1/4
Acenaphthene	2	2	1.'4
Anthracene	3.2	3.2	1/4
Benzo(a)anthracene	9.9	0.098	3/4
Benzo(a)pyrene	7.9	0.091	3/4
Benzo(b)fluoranthene	9.4	0.072	3/4
Benzo(g,h,i)perylene	3.9	0.042	3,4
Benzo(k)fluoranthene	8.3	0.1	3/4
Butyl benzyl phthalate	0.47	0.47	1/4
Chrysene	12	0.12	3/4
Di-n-octyl phthalate	0.66	0.66	1.4
Dibenz(a,h)anthracene	0.36	0.36	1.4
Dibenzofuran	1.2	1.2	1.4
Fluoranthene	27	0.057	4/4
Fluorene	2.2	2.2	1/4
Indeno(1,2,3-cd)pyrene	4.3	0.041	3/4
Naphthalene	0.69	0.69	1/4
Phenanthrene	21	0.12	3:4
Pyrene	25	0.054	4:4
bis(2-Ethylhexyl)phthalate	0.13	0.13	1.4
Volatile Organics			
Acetone	0.0056	0.0056	1.4
Methylene chloride	0.0018	0.0018	1:4

CHEMICALS OF CONCERN ON-BASE EAST SOLDIER CREEK SEDIMENTS

	Maximum Detected	Minimum Detected	
	Concentration	Concentration	Frequency of
Chemical	(mg/kg)	(mg/kg)	Detection
Metals			
Antimony	7.6	3.9	5/31
Beryllium	0.82	0.27	23/31
Cadmium	. 837	2.3	25/31
Chromium	2800	18	31/31
Cobalt	50.4	2.8	31/31
Lead	528	6.4	31/31
Mercury	8.3	0.036	30/31
Nickel	1360	9.7	31/31
Silver	15.2	0.44	25/31
Thallium	126	18.7	7/31
Vanadium	82.9	8.9	31/31
Pesticides/PCBs			
4,4'-DDD	0.042	0.031	3/31
Aldrin*	0.097	0.097	1/31
Aroclor 1254	14	0.054	8/31
Aroclor 1260*	0.068	0.068	1/31
Endosulfan II	0.093	0.05	3/31
lpha-Chlordane*	0.013	0.013	1/31
gamma-Chlordane	0.023	0.02	2/31
Semivolatile Organics			
.2-Dichlorobenzene	0.22	0.13	2/31
.4-Dichlorobenzene	1.1	0.051	3/31
-Chloronaphthalene	0.23	0.06	4/31
2-Chloronaphthalene	0.5	0.053	8/31
2-Methylnaphthalene	4.5	0.048	10/31
2,4-Dimethylphenol*	0.064	0.064	1/31
-Methylcholanthrene*	0.025	0.025	1/31
Acenaphthene	2.2	0.044	18/31
Acetophenone*	0.11	0.11	1.31
Anthracene	4.4	0.054	22/31
Benzo(a)anthracene	9.1	0.063	28/31
Benzo(a)pyrene	11	0.054	27/31
Benzo(b)fluoranthene	13	(),()44	29/31
Benzo(g,h,i)perylene	4.5	0.046	29/31
Benzo(k)fluoranthene	12	0.055	28/31
Benzoic acid*	0.28	0.28	1/31
Butyl benzyl phthalate*	0.51	0.51	1/31
îhry sene	12	0.062	29/31
Di-n-butyl phthalate	0.3	0.044	4/31
)(benz(a,h)anthracene	1.9	0.057	18/31
Dibenzofuran	1.5	(),()41	14/31
luoranthene	32	0.053	3()/31
luorene	2.5	0.053	19:31

CHEMICALS OF CONCERN ON-BASE EAST SOLDIER CREEK SEDIMENTS

Chemical	Maximum Detected Concentration (mg/kg)	Minimum Detected Concentration (mg/kg)	Frequency of Detection
Indeno(1,2,3-cd)pyrene	4.6	0.067	27/31
Naphthalene	4	0.046	15/31
Phenanthrene	18	0.067	29/31
Pyrene	. 17	0.058	30/31
bis(2-Ethylhexyl)phthalate	19	0.047	28/31
Volatile Organics			20/51
1,1-Dichloroethane*	0.0016	0.0016	1/31
1,1,2,2-Tetrachloroethane*	0.0027	0.0027	1/31
2-Butanone (MEK)	0.048	0.0025	11/31
Acetone	0.26	0.0066	22/31
Benzene*	0.021	0.021	1/31
Carbon disulfide	0.0092	0.0015	5/31
Chlorobenzene	18	0.0014	18/31
Chloromethane	0.025	0.0038	2/31
Ethylbenzene	0.0081	0.0013	4/31
Methylene chloride	0.021	0.0015	7/31
Styrene	0.036	0.0019	5/31
oluene	0.013	0.0015	2/31
richloroethene*	0.0019	0.0019	1/31
(ylenes (total)	0.0061	0.0015	4/31

^{*}These chemicals were only detected in the 0.5-foot level. They are evaluated in the current exposure scenario only because when combined with all depths for the future exposure scenario, they were eliminated based on low frequency of detection and low concentration.

CHEMICALS OF CONCERN OFF-BASE EAST SOLDIER CREEK SEDIMENTS

Chemical	Maximum Detected Concentration (mg/kg)	Minimum Detected Concentration (mg/kg)	Frequency of Detection
Metals			Detection
Antimony	4.8	4.8	1/9
Beryllium	0.67	0.6	4/9
Cadmium	25	2.4	6/9
Cobalt	8.1	1.2	9/9
Mercury	0.1	0.023	6/9
Thallium	130	17	7/9
Vanadium	27	5.3	9/9
Pesticides/PCBs		3.5	9/9
Dieldrin	0.0021	0.0021	1.0
Endosulfan II	0.0021	0.0021	1/9
Semivolatile Organics		0.0021	1/9
.4-Dichlorobenzene	0.042	0.042	1.0
-Chloronaphthalene	0.049	0.042	1/9
-Methylnaphthalene	0.13	0.13	2/9
Benzo(b)fluoranthene	0.04	0.04	1/9
Chrysene	0.047	0.044	1/9
luoranthene	0.83		2/9
sophorone	0.47	0.086	6/9
henanthrene	0.064	0.47	1/9
yrene	0.28	0.064	1/9
is(2-Ethylhexyl)phthalate	5.2	0.085	4/9
Volatile Organics	2.2	0.1	6/9
Butanone (MEK)	0.0083	0.002	
cetone	0.0083	0.0036	2/9
arbon disulfide		0.0098	4/9
hlorobenzene	0.0045	0.0013	3/9
ethylene chloride	0.15	0.019	2/9
J. T. SHIOTIGE	0.0021	0.0017	2/9

The purpose of the exposure assessment is to estimate the magnitude of potential chemical exposure among various receptor populations. The steps required to perform an exposure assessment include the following:

- Identification of potential receptor populations
- Evaluation of potential exposure pathways for completeness
- Evaluation of potential exposure parameters
- Estimation of exposure point concentrations
- Estimation of daily intake factors

The approach of this RA was to incorporate conservative exposure assumptions when estimating the magnitude of potential exposure, so that potential risks posed by the site were not underestimated. At the same time, exposure scenarios which are considered unlikely were excluded, since they do not reflect realistic exposure conditions. It is important to note that for purposes of an RA, exposure can be defined for both reasonable maximum exposure (RME) and average exposure. The RME represents the most exposed individual in a population, while the average exposure represents the most likely exposure for the potentially exposed population. Both RME and average exposure scenarios were evaluated in this RA.

3.1 IDENTIFICATION OF POTENTIAL RECEPTOR POPULATIONS

Potential receptors include human, plant, and animal populations, as well as, environmental receptors (e.g., streams, ponds, and lakes) that may be exposed to site-related chemicals. An assessment of potentially exposed plant and animal populations were addressed under a separate evaluation (WCFS 1997a). Only potential human receptor populations were addressed in this RA. Populations evaluated include those individuals most likely to come into contact with contaminated surface water and sediments in the four stream segments currently being assessed.

Because Tinker AFB is an active military facility with restricted access, local off-Base

populations cannot readily come into contact with the on-Base portions of East or West

Soldier Creek. For most site workers or visitors, exposure to the on-Base portions of the

creek is likely to be minimal, if at all. For the purposes of an RA, it was assumed that the

population with the greatest potential for contact with surface water or sediment from the

creek would be a construction worker involved in repair or installation of underground

pipelines around or under the creek. Because land use at Tinker AFB is unlikely to change in

the foreseeable future, this scenario is considered a maximum exposure scenario for both

current and future use conditions (evaluation of the maximum exposed population provides a

conservative estimation of risks for all potentially exposed populations).

Off-Base portions of East and West Soldier Creeks flow through several residential and

nonresidential areas. Access to the creek in these areas is essentially unrestricted, therefore, a

number of different receptors could potentially contact stream sediments and surface water.

The receptor with the potential for maximum exposure is likely to be a local resident who

swims or wades in the creek. This is particularly true for children, for whom the stream

would act as an "attractive nuisance." Since a residential exposure scenario is highly

conservative, evaluation of this scenario in the RA should be protective of local populations

under both current and future use conditions

Based on the discussion presented above, the populations evaluated quantitatively in the RA

consisted of the following:

On-Base construction worker

• Off-Base child resident

• Off-Base adult resident

3.2 EVALUATION OF POTENTIAL EXPOSURE PATHWAYS

An exposure pathway is the mechanism by which a receptor may come into contact with a

chemical. As defined by the RAGS, there are four major elements that characterize a

3 - 2

complete exposure pathway (EPA 1989a). These elements are:

Q-F96526 3MR0S01- DOC - jdg md-12 1 97 Tinker AFB - Soldier Creek - Long-Tenn Monitoring A source and mechanism of chemical release

A transport medium for the chemical

• A point of potential receptor contact with the medium (i.e., an exposure point)

A route of exposure (e.g., ingestion) for the receptor to come into contact with

the chemical

For an exposure pathway to be complete, all four elements must be present. The absence of

any one of these elements results in an incomplete exposure pathway for which site-related

health risks do not exist. Thus, the evaluation of potential exposure pathways is necessary to

focus on only those pathways that are complete and could potentially impact human health.

To develop a conceptual understanding of the sites and their potential to impact human health

and environment, a site conceptual exposure model (SCEM) is developed. This model

represents a theoretical exposure analysis and is used to identify complete exposure

pathways. Figure 3-1 depicts the site conceptual exposure model for the four stream

segments of concern in Soldier Creek. This model specifically identifies chemical sources,

release mechanisms, transport media, exposure routes, and receptor populations. Potential

on-Base sources of chemical release were identified previously in Section 1.1 (Site

Description) and 2.0 (Chemicals of Concern). The mechanism of release refers to the physicochemical properties of the chemicals that influence their mobility and potential

contact with a receptor. The presence and identification of receptors was discussed in

Section 3.1 (Identification of Potential Receptor Populations). An evaluation of potential

exposure pathways identified in the SCEM is presented in the following sections.

3.2.1 Identification of Potential Sources of Chemical Release

Numerous on-Base and off-Base sources of chemical release have been identified in previous

investigations (see B&V 1993, and NUS 1989 for detailed reviews). On-Base sources of

3-3

contamination include:

Q F96526 3MR0S01- DOC 1dg md 12 1 97 Finker AFB - Soldier Creek - Long-Ferm Monitoring Outfalls from Building 3001

• Building 3001

Southwest tank area

North tank area

• IWTP (Inactivated April 1996)

Besides the on-Base sources of release, several potential off-Base sources have also been identified (B&V 1993):

A paint shop

• A trailer park (northeast of Tinker AFB)

• An auto repair shop

• A service station

• A salvage yard

Because the on-Base sources differ in nature from the off-Base sources, it is likely that the on-Base receptors will be exposed to different chemical constituents and/or concentrations than off-Base receptors.

3.2.2 Identification of Potential Exposure Points and Exposure Routes

Exposure points are the locations where potentially exposed populations may contact contaminated media. In the present RA, surface water and sediments in East and West Soldier Creeks were the exposure points of concern. Groundwater exposure was evaluated separately and was not included in the current scope of this investigation.

Exposure routes are the mode of contact (inhalation, ingestion, or dermal contact) with the contaminated media. On-Base construction workers could be exposed to contaminants in on-Base portions of East and West Soldier Creek via incidental ingestion and dermal contact

Q. F96526 3MR0801- DOC (dg md. 12 1.97) I nker AFB - Soldier Creek - Long-Term Monitoring Unrd Annual Report with surface water and sediments while performing excavation activities or wading in the

creek where the construction activities are occurring.

The water level in the off-Base portion of West Soldier Creek generally is very shallow and

swimming is not possible. However, off-Base residents may be exposed to surface water and

sediments while wading. Ingestion and dermal contact with contaminated surface water and

sediments while wading was assumed to represent complete exposure pathways for both

child and adult resident receptors.

Although Soldier Creek does not include any swimming areas per se, several off-Base

portions of East Soldier creek are deep enough to swim in, and potentially could be used by

children for swimming. Consequently, a child resident swimming scenario was evaluated

quantitatively in this RA. A wading scenario for adults was assumed. Exposure was

assumed via ingestion and direct dermal contact with surface water and sediment for both

children and adults.

Inhalation exposure was assumed to be minor or incomplete for all scenarios and was not

evaluated in this RA because both East and West Soldier Creeks are located in open,

unconfined areas where atmospheric dilution would quickly attenuate the concentrations of

volatilized compounds released from the creek.

Potential exposure to contaminants in the surface water and sediments via ingestion of fish or

game animals is not likely to be a significant pathway. Neither East or West Soldier Creeks

contain a viable game and fish population, and the location of Tinker AFB within the

metropolitan area of Oklahoma City precludes any hunting activities. For these reasons,

exposure to contaminants via the food chain was considered an incomplete (or minor)

exposure pathway and was not evaluated in this RA.

3.3 RECEPTOR POPULATIONS NOT INCLUDED IN THE RISK

ASSESSMENT

Certain potential receptor populations can be excluded from consideration in the RA if they

do not represent realistic exposure scenarios. Although sensitive populations (e.g., pregnant

3-5

Q=F96526-3MR0S01- DOC_idg ind=12.1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring women, the elderly or infirm in hospitals or elderly care facilities, etc.) are likely to be located within the greater metropolitan area of Oklahoma City, they were excluded from the quantitative evaluation because these populations are not likely to be exposed to the media of concern (surface water and sediment).

3.4 EVALUATION OF POTENTIAL EXPOSURE PARAMETERS

To calculate the chronic daily intake (CDI) of COCs and to estimate the associated potential health risks, a number of exposure parameters must first be quantified. Parameters which are typically quantified include the following:

- Life span (days)
- Exposure duration (years)
- Exposure frequency (days/year)
- Exposure time (hours/day)
- Soil/sediment ingestion rate (mg/day)
- Body weight (kg)
- Exposed skin surface area (cm²)
- Dermal soil adherence (mg/cm²)
- Dermal soil absorption factor (unitless)
- Water ingestion rate (L/hour)
- Permeability constant (cm/hour)

The exposure parameter assumptions used in this RA were the same as those used in the previous RAs performed by WCFS (1996, 1997b). Consequently, direct comparison of potential risks between the three RAs was possible.

The numerical values for these parameters (**Tables 3-1, 3-2, 3-3** and **3-4**) are used to estimate the extent of chemical exposure. The numerical values were developed using site-specific information supplemented by a number of USEPA reference sources. USEPA guidance used

when developing exposure assumptions include the Exposure Factors Handbook (USEPA

1989b), Standard Default Exposure Factors (USEPA 1991a), Dermal Exposure Assessment:

Principles and Applications (USEPA 1992a), USEPA Region IV Guidance (1992b) and

RAGS (USEPA 1989a). These exposure assumptions are conservative. As a result, potential

exposures and potential health risks are not likely to be underestimated.

The basis for the selection of the number values for the exposure parameters are discussed in

the following sections.

3.4.1.1 <u>Life Span</u>

As recommended in the RAGS, life span is assumed to be the same for all receptor

populations, and is given as 70 years (1989a).

3.4.1.2 Exposure Duration

Exposure duration refers to the number of years in which exposure occurs. On-Base

construction workers are assumed to be full-time employees of Tinker AFB and are assumed

to have a RME duration of 25 years, as given by the USEPA (1991a). The average exposure

duration of 5 years for an on-Base construction worker is based on the average time an

individual spends at one job. This information is supplied by the Bureau of Labor Statistics

(U.S. Department of Labor 1987). Residents are assumed to have a reasonable maximum

exposure duration of 30 years (5 years between ages 1-6, and 25 years afterward), based on

the upper 90th percentile value for time spent in a single residence. The exposure duration

for average exposure for an adult resident is assumed to be 9 years based on the mean time

spent at a single residence (EPA 1989b). For child residents, the entire 5-year age span (ages

1-6) is conservatively assumed for average exposure.

3.4.1.3 Exposure Frequency

Exposure frequency refers to the number of days per year spent in direct contact with the

creek. For RME and average exposure, on-Base construction workers are assumed to spend

5 days and 1 day per year, respectively, working in the vicinity of the creeks. For adult

3-7

() F96526 3MR9801- DOC 4dg md 12.1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring residents, I day per month during the summer months (4 days/year) is assumed for RME.

One half of the RME exposure frequency (2 days/year) is assumed for average exposure. For

children (ages 1-6), 2 days per week during the 17 summer weeks (34 days/year) is assumed

for the RME exposure frequency. One half of the RME exposure frequency (17 days/year) is

assumed for average exposure.

3.4.1.4 Exposure Time

Exposure time refers to the number of hours per day that a receptor is in contact with a

potentially contaminated medium. For on-Base construction workers, this is assumed to be

8 hours per day, reflecting a normal working day. For average exposure, one half of the time

is assumed (4 hours/day) as the fraction of the working day the worker would be in direct

contact with surface water or sediment. For adult residents, 2 and 1 hours per day exposure

time were assumed for RME and average exposure, respectively. For children, exposure

times of 6 and 3 hours per day were assumed for RME and average exposure, respectively.

3.4.1.5 Sediment Ingestion Rate

The sediment ingestion rate refers to the amount of sediment that is ingested daily. Upper-

bound ingestion rates provided by USEPA (1991a) were used to evaluate RME exposure.

The RME ingestion rates used in this RA were 50 mg/day for workers, 100 mg/day for adult

residents, and 200 mg/day for children. For average exposure, ingestion rates of 10 mg/day

were assumed for both workers and adult residents, based on information presented in the

Exposure Factors Handbook (USEPA 1989b). An average ingestion rate of 100 mg/day was assumed for children, based on one-half the RME value

3.4.1.6 Body Weight

Body weights were obtained from the Exposure Factors Handbook (USEPA 1989b). An

adult body weight of 70 kg was used to evaluate construction workers. Age-weighted average body weights were calculated at 57.1 kg and 15.1 kg, respectively, for adult and child

3-8

residents.

Q F96526 3MR0S01- DOC adg.ind 12 1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring

3.4.1.7 Skin Surface Area

Exposed skin surface area is important when evaluating uptake of chemicals that are absorbed dermally. For dermal exposure to surface water and sediment in West and East Soldier Creeks, an RME surface area of 9,800 cm² was estimated for an on-Base construction worker, based on the adult surface areas of the head, hands, arms and lower legs (Exposure Factors Handbook: USEPA 1989b). For average exposure, an exposed area of 2,000 cm² was assumed for the construction worker based on the surface area of hands and forearms. Whole body immersion (6,500 cm²) was assumed for children swimming in the creek, both for RME and average exposure scenarios, as well as for the RME child wading scenario. The average exposed surface area for a wading child was assumed to 1,800 cm² based on the surface area for hands, forearms and feet. For adult residents, an RME surface area of 8,620 cm² was assumed, based on exposure of the head, hands, forearms, and lower legs. For average exposure, an exposed surface area of 2,800 cm² was assumed based on exposure of the hands, forearms and feet.

3.4.1.8 Dermal Sediment Adherence

Dermal sediment adherence is used, in conjunction with exposed skin surface area, to define the total amount of sediment adhering to exposed skin surfaces. The USEPA recommends 1.0 mg/cm² and 0.2 mg/cm² for upperbound (RME) exposure and average exposure, respectively (Dermal Exposure Assessment: Principles and Applications; USEPA 1992a).

3.4.1.9 **Dermal Absorption Factor**

The dermal sediment absorption factor provides an estimate of potential chemical absorption through the skin. As presented in USEPA Region IV guidance (1991d), dermal absorption is assumed to be 1.0 percent for organic chemicals and 0.1 percent for inorganic chemicals.

3.4.1.10 Surface Water Ingestion Rate

An RME surface water ingestion rate of 0.05 L hour was assumed for children swimming in East Soldier Creek, based on data presented in the RAGS (USEPA 1989a). For average

exposure while swimming, an ingestion rate of 0.025 L/hour was assumed, based on one-half

the RME value.

Surface water ingestion while wading is assumed to be significantly less than while

swimming. For all wading scenarios, the RME surface water ingestion rate was assumed to

be 0.005 L/hour and the average surface water ingestion rate was assumed to 0.0025 L/hour,

based on the assumption that ingestion during wading is 10 percent of the ingestion rate

during swimming.

3.4.1.11 Permeability Constant

Permeability constants are chemical-specific values used to define the dermal uptake of

chemicals from aqueous media, and are presented in units of cm/hour. Permeability

constants used in this RA are derived from Dermal Exposure Assessment: Principles and

Applications (USEPA 1992a).

3.5 ESTIMATION OF EXPOSURE POINT CONCENTRATION

Exposure point concentrations are chemical concentrations to which a receptor is exposed

when contact is made with a specific environmental medium. The RME and average

exposure point concentrations for the COCs are presented in Tables 3-5 to 3-14.

When calculating exposure point concentrations for the COCs, chemicals were assumed to be

present at one-half the detection limit for any samples in which they were reported as

undetected, in accordance with the RAGS (1989a). Using the approach recommended by

USEPA (USEPA 1992c), exposure point concentrations for both surface water and sediments were calculated as the upper 95 percent confidence limit values (UCL) of the arithmetic mean

concentration assuming lognormal distribution.

 $UCL = e^{(m+0.5S2 + SH/\sqrt{n-1})}$

Where:

UCL = Upper 95 percent confidence level

e = Constant (Base of natural log, equal to 2.718)

m = mean of transformed data

S = Standard Deviation of the transformed data

n = number of samples

H = H-statistics (from table published in Gilbert 1987)

The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was adopted as the RME exposure point concentration. Use of the maximum concentration, if less than the 95 percent UCL, is recommended by RAGS (USEPA 1989a). This approach is supported by the observation that the 95 percent UCL concentration may exceed the maximum detected concentration in instances where the variation of the data is large or when high detection limits strongly influence calculation of 95 percent UCL values. The concentration associated with the RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

Exposure point concentrations calculated for surface water (presented in **Tables 3-5, 3-6, 3-7**, and **3-8**) are used to calculate risks associated with both current and future use scenarios. Sediment samples collected from 0 to 0.5 feet are considered to be associated with current use scenarios. Sediment samples collected from all depths are considered to be associated with future use scenarios.

- **Table 3-9** presents the current on-Base West Soldier Creek sediment exposure point concentrations.
- **Table 3-10** presents the future on-Base West Soldier Creek sediment exposure point concentrations.
- Table 3-11 presents both the current and future off-Base West Soldier Creek sediment exposure point concentrations.
- Table 3-12 presents the on-Base current sediment exposure point concentrations.

• Table 3-13 presents the on-Base East Soldier Creek future sediment exposure

point concentrations.

Table 3-14 presents the off-Base East Soldier Creek current and future

sediment exposure point concentrations.

3.6 CALCULATION OF DAILY CHEMICAL INTAKES

Chronic daily intakes (CDIs) represent the daily amount of chemical taken in by a receptor per kilogram body weight, and are used with the Critical Toxicity Values (CTVs) to estimate

hazard quotients and potential cancer risks for each chemical (see detailed discussion in

Section 4.0). The CDIs are calculated for individual chemicals and receptors, based on the

potential exposure parameters discussed in Section 3.4. using the following equations:

Surface water ingestion for on-Base worker scenario:

$$CDI = (CW \times IR \times ET \times EF \times ED)/(BW \times AT1 \times AT2)$$

Surface water dermal exposure for on-Base worker scenario:

$$CDI = (CW \times SA \times PC \times ET \times EF \times ED \times CF)/(BW \times ATI \times AT2)$$

Sediment ingestion for on-Base worker scenario:

$$CDI = (CS \times CF \times IR \times EF \times ED)/(BW \times AT1 \times AT2)$$

Sediment dermal exposure for on-Base worker scenario:

$$CDI = (CS \times CF \times SA \times AF \times ABS \times EF \times ED)/(BW \times AT1 \times AT2)$$

Surface water ingestion for off-Base residential scenario:

$$CDI = CW \times HIF$$
 and

HIF = [(IRc x ETc x EFc x EDc) / BWc + (IRa x ETa x EFa x EDa) / BWa] / (ATI x AT2)

Q: F96526 3MR0S01- DOC jdg md 12 1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring Uird Annual Report Surface water dermal exposure for off-Base residential scenario:

$$CDI = CW \times HIF$$
 and

 $HIF = \{[(SAc \times PC \times ETc \times ETc \times EDc) / BWc + (SAa \times PC \times ETa \times EFa \times EDa) / BWa] / (AT1 \times AT2)\} \times CF$

Sediment ingestion for off-Base residential scenario:

$$CDI = CWx HIF$$
 and

 $HIF = \{ [(IRc \times EFc \times EDc) / BWc + (IRa \times EFa \times EDa) / BWa] \times CF \} / (A11 \times AT2) \}$

Sediment dermal exposure for off-Base residential scenario:

$$CDI = CS \times AF \times HIF$$
 and

 $HIF = \{ [(SAc \times EFc \times EDc \times ABS) / BWc + (SAa \times EFa \times EDa \times ABS) / BWa] \times CF \} / (ATI \times AT2) \}$

Where:

CDI = Chronic Daily Intake (mg/kg-day)

HIF = Human Intake Factor (L/kg-day for surface water, mg/kg-day for sediments)

CW = Concentration in Surface Water (mg/L)

CS = Concentration in Sediments (mg/kg)

IR = Ingestion Rate (L/hour for surface water, mg/day for sediments)

IRc = Child Resident Ingestion Rate (L/hour for surface water, mg/day for sediments)

IRa = Adult Resident Ingestion Rate (L/hour for surface water, mg/day for sediments)

ET = Worker Exposure Time (hours)

ETc = Child Resident Exposure Time (hours)

ETa = Adult Resident Exposure Time (hours)

SA = Worker Skin Surface Area available for contact (cm²)

SAc = Child Resident Skin Surface Area available for contact (cm²)

SAa = Adult Resident Skin Surface Area available for contact (cm²)

EF = Worker Exposure Frequency (days/year)

EFc = Child Resident Exposure Frequency (days/year)

```
PC = Dermal Permeability Constant (cm/hr)
```

EFa = Adult Resident Exposure Frequency (days/year)

ED = Worker Exposure Duration (years)

EDc = Child Resident Exposure Duration (years)

EDa = Adult Resident Exposure Duration (years)

BW = Worker Body Weight (kg)

BWc = Child Body Weight (kg)

BWa = Adult Body Weight (kg)

AF = Adherence Factor (mg/cm²)

ABS = Absorption Factor (unitless)

ATI = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, exposure duration for noncarcinogenic effects)

CF = Conversion Factor (kg/mg)

Attachment A presents the CDI calculations associated with each medium, route of exposure, and receptor.

TABLE 3-1

EXPOSURE PARAMETERS DERMAL CONTACT WITH SEDIMENTS

	ADULT RESIDENT	ESIDENT	CHILDR	CHILD RESIDENT	CONSTRUCT	CTION WORKER
Exposure Parameter	RME "	AVERAGE	RME.	AVERAGE	RME"	AVERAGE
(SA) Exposed Surface Area - wading (cm²)	8,620 ^{b.n}	2,800 ^{b.n}	6,500 ^{c.n}	1,800 ^{c.n}	₉ 008'6	2,000 €
(SA) Exposed Surface Area - swimming (cm²)	na	na	6,500 d.n	6,500 ^{d,n}	na	na
(AF) Dermal Sediment Adherence (mg/cm²)	1.00 f	0.20 f	1.00 ^f	0.20	1.00 f	0.20
(ABS) Absorption Factor (unitless)			Chemical	Chemical Specific 8		
(ED) Exposure Duration (years)	25 ^h	ا 6	5 h	5 '	25.1	5.1
(EF) Exposure Frequency (days/year)	ተ	2 °	34	12 ه	5 m	a _
(BW) Body Weight (kg)	57.1 ⁿ	57.1 ⁿ	15.1 ⁿ	15.1 ⁰	7.0	70
(ATI) Averaging Time - Noncarcinogenic Effects (years) ^p	25	6	5	5	25	5
(A12) Averaging Time - Cancer Effects (years) ^q	70	70	70	70	70	70

Note

- a Reasonable Maximum Exposure (RME) is defined by EPA as the reasonable upperbound exposure among potentially exposed populations.
- b. The surface area of head, hands, arms, and lower legs is assumed for RME. The surface area of hands, forearms and feet is assumed for average exposure
 - e Exposed surface area is based on whole body for RME. For average exposure, surface area of hands, forearms, and feet are used.
 - d Exposed surface area is based on whole body for both RME and average exposure.
 - d. I sposed surface area is based on whois body for boin KME, and a cloge exposure, e. Average exposed surface for construction worker based on hands and forearms.
- f. Dermal adherence based on Dermal Exposure Assessment: Principles and Applications (USEPA, 1992a)
- g. Based on the EPA Region IV Guidance (USEPA 1992b) 1.0% dermal absorption is assumed for organics and 0.1% for inorganics.
- h Residents are assumed to have a RME duration of 30 years (5 years between age 1-6, 25 years as adult), based on the upper 90th percentile value for time spent in a single residence (Exposure Factors Handbook, USEPA, 1989b).
 - i. Average duration at a single residence is 9 years, as identified in Exposure Factors Handbook (USEPA, 1989b).
- Construction workers are assumed to have an RME duration of 25 years as given in OSWER Directive 9285.6-03 (USEPA, 1991a).
- For average exposure, the exposure duration of 5 years is based on the average time spent at a job (U.S. Department of Labor, 1987).
 - k. Assumes 1 day/month exposure during the 4 months of summer.
 - LAssumes 2 day/week exposure for the 17 weeks of summer.
- m. Exposure frequency for construction workers assumes minor construction activities in the creek.
 - n. Age-weighted average.
- o. Assumed value based on one-half the RME value.
- p. Averaging time for noncareinogenie effects is based on the exposure duration.
- q. Averaging time for carcinogenic effects is based on assumed lifetime of 70 years.
 - r. Average exposure duration for a child assumes entire 5 year age span (age 1-6).
- na. Not applicable.

I had Annual Report

TABLE 3-2

EXPOSURE PARAMETERS INGESTION OF SEDIMENTS

	ADULTR	ADULT RESIDENT	CHILDR	CHILD RESIDENT	CONSTRUCT	CONSTRUCTION WORKER
Exposure Parameter	RME.	AVERAGE	RME.	AVERAGE	RME.	AVERAGE
(IR) Ingestion Rate (mg/day)	g 001	, 01	200 ^b	100 k	9 0S	5 01
(ED) Exposure Duration (years)	25 ^d	3 6	5 d	5 n	25 f	3
(EF) Exposure Frequency (days/year)	30 TT	2 *	34 h	17 k	- 5	-
(BW) Body Weight (kg)	57.1	57.1 1	15.1	15.1	70	. 02
(ATI) Averaging Time - Noncarcinogenic Effects (years)	25	6	5	5	25	
(AT2) Averaging Time - Cancer Effects (years) ^m	70	7.0	70	70	70	70

Z

a. Reasonable Maximum Exposure (RME) is defined by EPA as the reasonable upperbound exposure among potentially exposed populations.

b. For RME, standard default sediment ingestion rates of 100 mg/day for adult resident, 200mg/day for children and 50 mg/day for workers were assumed (USEPA, 1991b)

c. Average ingestion rate as identified in Exposure Factors Handbook (USEPA, 1989b).

d. Residents are assumed to have a RME duration of 30 years (5 years between age 1-6, 25 years as adult), based on the upper 90th percentile value for time spent in a single residence (Exposure Factors Handbook, USEPA, 1989b).

c. Average duration at a single residence is 9 years, as identified in Exposure Factors Handbook (USEPA, 1989b).

f. Construction workers are assumed to have an RME duration of 25 years as given in OSWER Directive 9285.6-03 (USEPA, 1991a).

For average exposure, the exposure duration of 5 years is based on the average time spent at a job (U.S. Department of Labor, 1987).

g. Assumes 1 day/month exposure during the 4 months of summer.

h. Assumes 2 day/week for the 17 weeks of summer.

Exposure frequency for construction workers assumes minor construction activities in the creek.

i. Age-weighted average.

k. Assumed value based on one-half the RME value.

I. Averaging time for noncarcinogenic effects is based on the exposure duration.

m. Averaging time for carcinogenic effects is based on assumed lifetime of 70 years.

n. Average exposure duration for a child assumes entire 5-year age span (age 1-6).

TABLE 3-3

DERMAL CONTACT WITH SURFACE WATER EXPOSURE PARAMETERS

I HING	ADULT RESIDENT	SIDENT	CHILD R	THILD RESIDENT	CONSTRUCT	CONSTRUCTION WORKER
Exposure Larameter		AVERAGE	RME	AVERAGE	RME.	AVERAGE
(SA) Exposed Surface Area - wading (cm²)	m.o (2,800 ^{e.m}	6,500 ^{d,m}	1,800 ^{c.m}	, 008'6	2.000 (
(SA) Exposed Surface Area - swimming (cm ²) ^b	a	na	6,500 d.m	6,500 d.m	na	na
(PC) Dermal Permeability Constant (cm/hour)			Chemica	Chemical-Specific		
(F.1) Exposure Time (hours/day)		0 1	9	3 0	8	٥
(F.D) Exposure Duration (years)	8 5	4 6	5 8	5 '	25	- 5
(F.F.) Exposure Frequency (days/year)	(1	2 °	34 k	ا ل ه	5	-
(BW) Body Weight (kg) S7.1 m	ııı	57.1 m	15.1 ^m	15.1 m	7()	70
(AT1) Averaging Time - Noncarcinogenic Effects (years) ^p 25		6	5	5	25	5
(A12) Averaging Time - Cancer Effects (years) ^q 70		70	70	70	7.0	07

- a Reasonable Maximum Exposure (RME) is defined by EPA as the reasonable upperbound exposure among potentially exposed populations.
 - b. Swimming is only evaluated for the child scenario in off-base portions of East Soldier Creek.
 - c. The surface area of head, hands, arms, and lower legs is assumed for RME
 - d. Exposed surface area is based on whole body exposure.
- c. Average exposure assumes surface area of hands, forearms, and feet
- CAVETAGE exposed surface area for construction workers based on hands and forearms.
- g. Residents are assumed to have a RME duration of 30 years (5 years between age 1-6, 25 years as adult), based on the upper 90th percentile value for time spent in a single residence (Exposure Factors Handbook, USEPA, 1989b).
 - h. Average duration at a single residence 18 9 years, as identified in Exposure Factors Handbook (USEPA, 1989b).
- For average exposure, the exposure duration of 5 years is based on the average time spent at a job (U.S. Department of Labor, 1987) (Construction workers are assumed to have an RME duration of 25 years as given in OSWER Directive 9285.6-03 (USEPA, 1991a).
 - Assumes 1 day/month exposure during the 4 months of summer.
 - k. Assumes 2 day/week exposure for the 17 weeks of summer.
- Exposure frequency for construction workers assumes minor construction activities in the creek
 - m. Age-weighted average.
- o. Assumed value based on one-half the RME value.
- p. Averaging time for noncarcinogenic effects is based on the exposure duration.
 - q. Averaging time for carcinogenic effects is based on lifetime of 70 years.
- r Average exposure duration for a child assumes entire 5-year age span (age 1-6).
- na. Not applicable.

TABLE 3-4

EXPOSURE PARAMETERS INGESTION OF SURFACE WATER

	ADULT	ADULT RESIDENT	CHILD	CHILD RESIDENT	CONSTRUCT	TION WORKER
Parameter	RME *	AVERAGE	RME.	AVERAGE	RME.	AVERAGE
IR) Ingestion Rate - wading (L/hour)	0.005 °	0.0025	0.005 °	0.0025	0.005 ^c	0.0025
IR) Ingestion Rate - Swimming (L/hour) ^b	na	na	0.050 ^d	0.025	na	na
ET) Exposure Time (hours/day)	2	_	9	3	8	7
ED) Exposure Duration (years)	25 °	9 f	۶ ډ	5.0	25 8	5.8
EF) Exposure Frequency (days/year)	ų †	2	34 i	17	5 1	- 1
BW) Body Weight (kg)	57.1 k	57.1 k	15.1 ^k	15.1 k	70	70
ATI) Averaging Time - Noncarcinogenic Effects (years) ^m	25	6	S	5	25	5
A12) Averaging Time - Cancer Effects (years) ⁿ	7.0	70	70	70	7.0	70

Notes

a. Reasonable Maximum Exposure (RME) is defined by EPA as the reasonable upperbound exposure among potentially exposed populations.

b. Swimming is only evaluated for the child scenario in off-base portions of East Soldier Creek.

Assumed to be one-tenth of the surface water ingestion rate while swimming.

d. Surface water ingestion rate while swimming as identified in RAGS (USEPA, 1989a).

Residents are assumed to have a RME duration of 30 years (5 years between age 1-6, 25 years as adult), based on the upper 90th percentile value

for time spent in a single residence (Exposure Factors Handbook, USEPA, 1989b).

g. Construction workers are assumed to have an RME duration of 25 years as given in OSWER Directive 9285.6-03 (USEPA, 1991a). 1. Average duration at a single residence is 9 years, as identified in Exposure Factors Handbook (USEPA, 1989b).

For average exposure, the exposure duration of 5 years is based on the average time spent at a job (U.S. Department of Labor, 1987)

h. Assumes I day/month exposure during the 4 months of summer.

1. Assumes 2 day/week exposure for the 17 weeks of summer.

1 Exposure frequency for construction workers assumes minor construction activities in the creek.

Age-weighted average.

1. Assumed value based on one-half the RME value.

m Averaging time for nonearcinogenic effects is based on the exposure duration.

n. Averaging time for carcinogenic effects is based on lifetime of 70 years.

o. Average exposure duration for a child assumes entire 5-year age span (age 1-6).

na. Not applicable.

Third Annual Report

TABLE 3-5

EXPOSURE POINT CONCENTRATIONS ON-BASE WEST SOLDIER CREEK SURFACE WATER (CURRENT AND FUTURE SCENARIOS)

	Maximum Detected			RME Exposure Point	Average Exposure Point
(hemical	Concentration (mg/L)	Mean" (mg/L)	UCL*L (mg/L)	Concentration ^c (mg/L)	Concentration ^d (mg/L)
Metals					
Antimony	5.50E-04	3.90E-04	2.50E-01	5.50E-04	3.90E-04
Arsenie	3.80E-03	4.60E-03	6.70E-03	3.80E-03	3.80E-03
(admium	8.801:-04	3.70E-04	5.20E+03	8.80E-04	3.7015-04
Cobalt	1.80E-03	9.90E-04	2.10E+03	1.80E-03	9.90E-04
Nickel	5.20E-02	2.20E-02	1.50E+04	5.20E-02	2.20E-02
Vanadium	4.90E-03	2.20E-03	2.30E±01	4.90E-03	2.20E-03
Semivolatile Organics					
bist 2-Ethy lhexy Dphthalate	4.30E-03	4.80E-03	5.70E-03	4.30E-03	4.30E-03
Volatile Organics					
Acetone	3.70E-03	4.60E-03	6.90E-03	3.70E-03	3.70E-03
Chloromethane	1.10E-03	3.70E-03	6.30E+00	1.10E-03	1.10E-03
Styrene	3.40E-03	2.80E-03	4.30E-03	3.40E-03	2.80E-03

Notes

- a. One half the detection limit is used for all nondetects when calculating values.
- b. The upper 95 percent confidence limit values (UCL.) of the arithmetic mean concentration assuming lognormal distribution
- e. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - d. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-6

EXPOSURE POINT CONCENTRATIONS OFF-BASE WEST SOLDIER CREEK SURFACE WATER (CURRENT AND FUTURE SCENARIO)

	Maximum Detected			RME Exposure Point	Average Exposure Point
Chemical	Concentration (mg/L)	Mean" (mg/L)	UCL*.b (mg/L)	Concentration (mg/L)	Concentrationd (mg/L)
Metals					
Antimony	t0-30f*t	4.30E-04	6.80E-04	4.40E-04	4,30E-04
Cadmium	5.20E-04	4.00E-04	9.80E-04	5.20E-04	4.00E-04
Cobalt	3.60E-04	2.30E-04	1.20E-01	3.6 E-04	2.30E-04
Nickel	1.60E-02	8.60E-03	5.70E+04	1.60E-02	8.60E-03
Vanadium	1.60E-02	7.50E-03	8.60E-02	1.60E-02	7.501:-03
Volatile Organics					
Acetone	5.50E-03	5.10E-03	5.40E-03	5.40E-03	5.10E-03
Bromomethane	7.2015-03	5.60E-03	7.20E-03	7.20E-03	5.60E-03
Chloromethane	3.60E-03	3.90E-03	9.10E-03	3.60E-03	3.60E-03
lodomethane	1.80E-03	2.00E-03	3.70E-03	1.80E-03	1.80E-03
Methylene chloride	1.40E-03	2.2015-03	3.60E-03	1.40E-03	1.40E-03

Notes

- a. One half the detection limit is used for all nondetects when calculating values.
- b. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming lognormal distribution.
- c. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - d. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-7

EXPOSURE POINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SURFACE WATER (CURRENT AND FUTURE SCENARIOS)

	Maximum Detected			RME Exposure Point	Average Exposure Point
Chemical	Concentration (mg/L)	Mean* (mg/L)	$\mathrm{UCL}^{a,b}$ (mg/L)	Concentration (mg/L)	Concentration ^d (mg/L.)
Metals					
Antimony	2.50E-04	5.50E-04	1.10E-03	2.50E-04	2.50E-04
Arsenic	2.70E-03	2.50E-03	2.50E-03	2.50E-03	2.50E-03
Cadmium	1.60E-02	1.40E-03	3.30E-03	3.30E-03	1.40E-03
Cobalt	9.60E-04	3.40E-04	4.80E-04	4.80E-04	3.40E-04
Nickel	2.00E-02	8.50E-03	1.30E-02	1.30E-02	8.50E-03
Silver	6.20E-04	3.80E-04	4.70E-04	4.70E-04	3.80E-04
Vanadium	1.80E-02	1.30E-02	1.40E-02	1.40E-02	1.301:-02
Pesticides/PCBs					
Aroclor 1254	5.80E-04	4.90E-04	5.00E-04	5.00E-04	4.90E-04
Semivolatile Organics					
bis(2-Ethylhexyl)phthalate	1.20E-02	5.10E-03	5.70E-03	5.70E-03	5.10E-03
Volatile Organics					
Acetone	1.20E-02	5.30E-03	6.10E-03	6.10E-03	5.30E-03
Bromoform	1.60E-03	2.50E-03	2.60E-03	1.60E-03	1.60E-03
Dibromochloromethane	1.80E-03	2.50E-03	2.50E-03	1.80E-03	1.80E-03
Ethanol	4.10E-02	2.40E-01	3.00E-01	4.10E-02	4.10E-02
Methylene chloride	1.30E-03	2.50E-03	3.10E-03	1.30E-03	1.30E-03

Notes:

- a. One half the detection limit is used for all nondetects when calculating values.
- b. The upper 95 percent confidence limit values (UCL.) of the arithmetic mean concentration assuming lognormal distribution.
- c. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - d. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-8

OFF-BASE EAST SOLDIER CREEK SURFACE WATER **EXPOSURE POINT CONCENTRATIONS**

(CURRENT AND FUTURE SCENARIOS)

	Maximum Detected			RME Exposure Point	Average Exposure Point
Chemical	Concentration (mg/L)	Mean* (mg/L)	UCL** (mg/L)	Concentration ^c (mg/L)	Concentration ^d (mg/L)
Metals					
Antimony	2.90E-04	3.80E-04	8.70E-04	2.90E-04	2.90E-04
Arseme	2.801:-03	2.50E-03	2.80E-03	2.80E-03	2.50E-03
Cadmium	1.30E-03	9.50E-04	4.10E-03	1.30E-03	9.50E-04
Cobalt	t0-300°t	3.60E-04	4.40E-04	4,00E-04	3.60E-04
Nickel	1.20E-02	9.50E-03	6.00E-02	1.20E-02	9.50E-03
Vanadium	1.60E-02	1.20E-02	3.30E-02	1.60E-02	1.20E-02
Semivolatile Organics					
bis(2-Ethylhexy1)phthalate	5.00E-03	4.80E-03	5.40E-03	5.00E-03	4.80E-03
Volatile Organics					
Acetone	4.10E-03	4.80E-03	5.40E-03	4.10E-03	4.10E-03

Notes

a. One half the detection limit is used for all nondetects when calculating values.

b. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming fognormal distribution.

c. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.

d. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-9

EXPOSURE POINT CONCENTRATIONS ON-BASE WEST SOLDIER CREEK SEDIMENT (CURRENT SCENARIO)

				RME	Average
	Maximum Detected			Exposure Point	Exposure Point
	Concentration	Mean	$^{\text{c}}$	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Metals					
Bery Hium	1.70E+00	8.51E-01	1.20E+00	1.20E+00	8.50E-01
Cadmium	8.00E+01	1.56E+01	8.50E+02	8.00E+01	1.60E+01
Cobalt	6.1715+01	1.89E+01	4.50E+01	4.50E+01	1 90F+01
l ead	2.98E+02	8.33E+01	2.80E+02	2.80E+02	8.30E+01
Mercury	3.80E-01	1.26E-01	7.80E-01	3.80E-01	1.308-01
Nickel	1.43E+03	3.56E±02	1.20E+04	1.40E+03	3.60E+02
Silver	9,92E+01	2.30E+01	2.50E+03	9.90E+01	2.30F+01
Thallium	1.27E+02	1.12E+02	3.30E+02	1.30E+02	1.10E±02
Vanadium	8.2115+01	3.87E+01	5.60E+01	5.60E+01	3.90E+01
Pesticides/PCBs					
300-,+1-	8.501:-03	7.38E-03	2.10E-02	8.50E-03	7.40F-03
Aldrin	6.70E-03	3.74E-03	1.00E-02	6.70E-03	3.701:-03
Aroclor 1254	4.40E+00	6.86E-01	2.10E+01	4.40E+00	6.90E-01
Heptachlor epoxide	2.80E-03	3.65E-03	9.70E-03	2.80E-03	2.80E-03
Semivolatile Organics					
Anthracene	6.10E-02	6.84E-01	2.50E+00	6.1015-02	6.10E-02
Benzo(a)anthracene	1.90E+00	4.61E-01	2.00E+00	1.90E±00	4.60E-01
Benzo(a)pyrene	5.20E+00	8.42E-01	7.70E+00	5.20E+00	8.40E-01
Benzo(b)fluoranthene	4.20E+00	7.78E-01	6.00E+00	4.20E+00	7.80E-01
Benzo(g,h,i)perylene	5.30E+00	7.51E-01	3.70E+00	3.70E+00	7.508-01
Benzo(k)fluoranthene	4.10E+00	8.20E-01	6.90E+00	4.10E+00	8.20E-01
Chry sene	2.50E+00	5.85E-01	3.10E+00	2.50E+00	5.80E-01
Di-n-butyl phthalate	2.00E-01	6.97E-01	1.90E+00	2.00E-01	2.00E-01
Dibenz(a,h)anthracene	1.60E+00	3.64E-01	6.80E-01	6.80E-01	3.60E-01
Fluoranthene	3.40E+00	8.19E-01	5.00E+00	3.40E+00	8.20E-01

F96526 [ALSDCUR XLS]-TABLE 3-9/sv-ind 12 1-97 Imket AFB - Soldier Creek - Long-Term Monitoring Illind Annual Report

TABLE 3-9

EXPOSURE POINT CONCENTRATIONS

ON-BASE WEST SOLDIER CREEK SEDIMENT (CURRENT SCENARIO)

				RME	Average
4	Maximum Detected			Exposure Point	Exposure Point
-	Concentration	Mean ^{a.b}	fiCL ^{4b,c}	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Indeno(1,2,3-cd)pyrene	4,7015+00	6.98E-01	2.50E+00	2.50E+00	7.00E-01
Phenanthrene	2.30E;+00	4.78E-01	2.90E+00	2.30E+00	4.8015-01
Pyrene	2.80E+00	7.01E-01	4.00E+00	2.80E+00	7.00E-01
bis(2-Fithy lhexy Dphthalate	10-301-1	3.93E-01	1,40E+00	1.40E-01	1.40E-01
Volatile Organics					
Acetone	5.90E-02	1.79E-02	4.70E-02	4,70E-02	1.80E-02
Carbon disulfide	5.70E-03	6.58E-03	1.20E-02	5.70E-03	5.70E-03
Chloromethane	4.00E-03	1.15E-02	1.90E-02	4.001;-03	4.00E-03
Ethylbenzene	4.50E-03	6.46E-03	1.10E-02	4.50E-03	4.50E-03
Methy lene chloride	1.40E-03	6.49E-03	1.30E-02	1.40E-03	£0-30F1
Styrene	\$.00E-01	5.33E-02	2.30E-01	2.30E-01	5.30E-02
Toluene	3.40E-02	9.41E-03	2.50E-02	2.50E-02	9.40E-03
Viny I chloride	2.80E-03	1.22E-02	2.40E-02	2.80E-03	2.80E-03

- a. Surface (0-0.5 feet) sediment data are used in the calculations.
- b. One half the detection limit is used for all nondetects when calculating values.
- c. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming lognormal distribution.
- d. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - e. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-10

EXPOSURE POINT CONCENTRATIONS ON-BASE WEST SOLDIER CREEK SEDIMENTS

(FUTURE SCENARIO)

				RME	Average
	Maximum Detected	Mean		Exposure Point	Exposure Point
in the state of th	Concentration	Concentration a.b	$\Omega C \Gamma^{*,p,c}$	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Metals					
Antimony	1.10E+01	4.50E±00	5.00E+00	5.00E+00	4.50E+00
Beryllium	1.70E+00	7.40E-01	9.40E-01	9.40E-01	7.4015-01
Cadmium	2.10E+02	2.2015+01	1.60E+02	1.60E+02	2.20E+01
Chromium	4.00E+03	3.20E+02	8.00E+02	8.00E+02	3.20E+02
Cobalt	1.70E+02	2.40E+01	3.50E+01	3.50E+01	2.40E+01
Lead	9.30E+02	9,40E+01	1.90E+02	1.90E+02	9,401;+01
Mercury	5.50E-01	1.0013-01	1.80E-01	1.805-01	1.00E-01
Nickel	6.50E±03	4,40E+02	1.40E+03	1.4015+03	4.40E+02
Silver	7.30E+02	4.00E+01	1.70E+02	1.70E+02	4.00E+01
Thallium	1.30E+02	9.60E+01	1.40E+02	1.30E+02	9.60E+01
Vanadium	1.20E+02	3.80E+01	4.80E+01	4.80E+01	3.80E+01
Pesticides/PCBs					
Aldım	6.70E-03	2.00E-02	2.80E-02	6.70E-03	6.70E-03
Aroclor 1254	8.20E+01	4.20E+00	3.00E+01	3.00E±01	4.20E±00
Semivolatile Organics					
1.2-Dichlorobenzene	1.60E+00	5.60E-01	7.30E-01	7.30E-01	\$.60E-01
2-Methy Inaphthalene	8.50E-01	5.00E-01	6.20E-01	6.20E-01	5.00E-01
Acenaphthene	1.10E+00	5.20E-01	7.20E-01	7.20E-01	5.20E-01
Anthracene	1.60E+00	5.40E-01	8.40E-01	8.40E-01	5.40E-01
Benzidine	2.20E-01	8.40E±00	1.50E+01	2.20E-01	2.20E-01
Benzo(a)anthracene	5.70E+00	7.3015-01	1.20E+00	1.20E+00	7.30E-01
Benzo(a)pyrene	5.80E+00	8.70E-01	1.50E+00	1.50E+00	8.70E-01
Benzo(b)fluoranthene	5.60E+00	8.90E-01	1.60E+00	00+309T	8.90E-01
Benzo(g,h,i)perylene	5.30E+00	5.80E-01	8.30E-01	8.30E-01	5.80E-01
Benzo(k)fluoranthene		1.10E+00	1.90E+00	1.90E+00	1.10E+00
Chrysene	7.00E+00	9.00E-01	1.50E+00	1.50E+00	9.00E-01

TABLE 3-10

EXPOSURE POINT CONCENTRATIONS ON-BASE WEST SOLDIER CREEK SEDIMENTS

(FUTURE SCENARIO)

	Maximum Detected	Mean		RME Exposure Point	Average Exposure Point
	Concentration	Concentrationab	UCL*,b,c	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dibenz(a,b)anthracene	00+3091	3.90E-01	5.10E-01	5.10E-01	3.9015-01
Dibenzofuran	1.10E+00	5.20E-01	6.70E-01	10-302.9	5.20E-01
Fluoranthene	2.10E+01	1.80E+00	3.00E+00	3.00E+00	1.80E+00
Fluorene	1.40E±00	5.4015-01	7.10E-01	7.10E-01	5.40E-01
Indeno(1,2,3-ed)pyrene	4.701:+00	\$.60E-01	7.90E-01	10-306.2	5.60E-01
Naphthalene	2.10E±00	5.90E-01	7.90E-01	10-306-2	5.901:-01
Phenanthrene	1.4015±01	1.30E±00	2.10E+00	2.10E+00	1.30E+00
Pyrene	1.201:+01	00+30f1	2.20E+00	2.20E+00	1.40E+00
bis(2-1 thy lhexy l)phthalate	1.4015-01	7.60E-01	1.10E+00	1.40E-01	1.40E-01
Volatile Organics					
Acetone	8.90E-02	1.40E-02	1.80E-02	1.80E-02	1.40E-02
Ethy Benzene	5.30E-02	6.40E-03	7.20E-03	7.20E-03	6.40E-03
Methy lene chloride	1.80E-03	4.90E-03	6.10E-03	1.80E-03	1.80E-03
Styrene	5.00E-01	3.40E-02	2.60E-02	2.60E-02	2.60E-02
Toluene	3.40E-02	6.70E-03	8.40E-03	8.40E-03	6.70E-03

Notes:

- a Sediment data from all depths are used in the calculations.
- b. One half the detection limit is used for all nondetects when calculating values.
- e. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming lognormal distribution.
- d. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - e. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-11

EXPOSURE POINT CONCENTRATIONS OFF-BASE WEST SOLDIER CREEK SEDIMENTS (CURRENT AND TUTURE SCENARIOS)

				RME	Average
	Maximum Detected			Exposure Point	Exposure Point
	Concentration	Mean	$UCL^{\mathtt{a},\mathrm{b},\mathrm{c}}$	Concentration ^d	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Metals					
Antimony	4.40E+00	3.90E+00	4.40E+00	4.40E+00	3.90E±00
Beryllium	5.10E-01	2.60E-01	1.70E+00	5.10E-01	2.60E-01
Cadminm	1.70E+01	7.20E+00	1.10E+03	1.70E+01	7.20E+00
Chrominm (VI)	8.40E+00	2.30E+00	6.70E+06	8.40E+00	2.30E+00
Cabalt	7.30E+00	6.80E+00	7.60E+00	7.30E+00	6.80E+00
Covari	2.50E+02	7.50E+01	1.00E+06	2.50E+02	7.50E+01
Mercury	5.50E-02	2.70E-02	1.30E-01	5.50E-02	2.70E-02
Cilver	1.60E+01	7.30E+00	4.70E+04	1.60E+01	7.30E+00
Vanadium	2.30E+01	1.50E+01	3.10E+01	2.30E+01	1.50E+01
Pesticides/PCBs					
Aroclor 1254	6.00E+00	2.30E+00	4.20E+03	6 J0E+00	2.30E+00
Semivolatile Organics					
2-Methylnanhthalene	2.80E-01	2.20E-01	2.80E-01	1.80E-01	2.20E-01
Aconomythene	2.00E+00	6.50E-01	1.80E+02	2.00E+00	6.50E-01
Authoreme	3.20E+00	9.50E-01	3.10E+03	3.20E+00	9.50E-01
Renzolabanthracene	9.90E+00	2.60E+00	6.20E+08	6.90E+00	2.60E+00
Daniel (a) myrene	7.90E+00	2.10E+00	2.20E+08	7.90E+00	2.10E+00
Denzo(a)/ytene	9.40E+00	2.40E+00	80+309 ^{.9}	9.40E+00	2.40E+00
Denzo(a h i)namlana	3.90E+00	1.00E+00	9.40E+07	3.90E+00	1.00E+00
Denzo(garaphene	8.30E+00	2.20E+00	1.10E+08	8.30E+00	2.20E+00
Buttel benzyl phthalate	4.70E-01	2.70E-01	6.40E-01	4.70E-01	2.70E-01
Chrysphe	1.20E+01	3.10E+00	7.70E+08	1.20E+01	3.10E+00
Ciliyaciic					

TABLE 3-11

EXPOSURE POINT CONCENTRATIONS OFF-BASE WEST SOLDIER CREEK SEDIMENTS (CURRENT AND FUTURE SCENARIOS)

				RME	Average
	Maximum Detected			Exposure Point	Exposure Point
	Concentration	Mean ^{a,b}	$UCL^{a,p,c}$	Concentration ^d	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Di-n-octy1 phthalate	6.60E-01	3.10E-01	1.50E+00	6.60E-01	3.10E-01
Dibenz(a.h)anthracene	3.60E-01	2.40E-01	4.00E-01	3.00E-01	2.40E-01
Dibenzofuran	1.20E+00	4.50E-01	1.20E+01	1.20E+00	4.50E-01
Fluoranthene	2.70E+01	6.90E+00	2.00E+13	2.70E+01	6.90E+00
Fluorene	2.20E+00	7.00E-01	2.50E+02	2.20E+00	7.00E-01
Indeno(1,2,3-cd)pyrene	4.30E+00	1.10E+00	2.10E+08	4.30E+00	1.10E+00
Naphthalene	6.90E-01	3.20E-01	1.70E+00	6.90E-01	3.20E-01
Phenanthrene	2.10E+01	5.40E+00	1.90E+11	2.10E+01	5.40E+00
Pyrene	2.50E+01	6.40E+00	3.10E+13	2.50E+01	6.40E+00
bis(2-Fthylhexyl)phthalate	1.30E-01	2.80E-01	8.70E+00	1.30E-01	130E-01
Volatile Organics					
Acetone	5.60E-03	5.90E-03	6.20E-03	5.60E-03	5.60E-03
Methylene chloride	1.80E-03	3.40E-03	1.00E-02	1.80E-03	1.80E-03

Notes:

- a. Sediment data from all depths are used in the calculations.
- b. One half the detection limit is used for all nondetects when calculating values.
- c. The upper 95 percent confidence limit values (UCL.) of the arithmetic mean concentration assuming lognormal distribution.
- d. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - e. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-12

	EXPOSUI ON-BASE EA	RE POINT CO ST SOLDIER	EXPOSURE POINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SEDIMENTS	ONS MENTS	
)	(CURRENT SCENARIO)	ENARIO)		
	Maximum Detected			RME Exposure Point	Average Exposure Point
1.7	Concentration	Mean	5'q'*(1.):1	Concentration	Concentration
Metals	(III K) KK)	(III S/NS)	(mg/kg)	(IIIg/Rg)	(mg/kg)
Antimony	7.60E+00	4.90E+00	5.60E+00	5.60E+00	4.90E+00
Beryllium	8.20E-01	4.90E-01	7.40E-01	7.40E-01	4.90E-01
Cadmium	8.37E+02	6.20E+01	2.00E+03	8.40E+02	6.20E+01
Chromium	2.80E+03	4.90E+02	1.80E+03	1.80E+03	4.90E+02
Cobalt	5.04E+01	1.50E+01	2.20E+01	2.20E+01	1.50E+01
Lead	5.28E+02	1.70E+02	6.30E+02	5.30E+02	1.70E+02
Mercury	8.30E+00	1.10E+00	3.50E+00	3.50E+00	1.10E+00
Silver	1.52E+01	4.70E+00	1.30E+01	1.30E+01	4.70E+00
Thallium	7.26E+01	1.40E+02	2.30E+02	7.30E+01	7.30E+01
Vanadium	8.29E+01	2.90E+01	3.70E+01	3.70E+01	2.90E+01
Pesticides/PCBs					
4.4'-DDD	4.20E-02	6.10E-02	3.70E-01	4.20E-02	4.20E-02
Aldrin	9.70E-02	3.50E-02	2.50E-01	9.70E-02	3.50E-02
Aroclor 1254	1.001;+01	1.50E+00	1.20E+01	1.00E+01	1.50E+00
Aroclor 1260	6.80E-02	6.30E-01	4.10E+00	6.80E-01	6.30E-01
Endosulfan II	9.30E-02	6.50E-02	4.50E-01	9.30E-02	6.50E-02
alpha-Chlordane	1.30E-02	3.10E-02	1.90E-01	1.30E-02	1.30E-02
gamma-Chlordane	2.30E-02	3.20E-02	2.00E-01	2.30E-02	2.30E-02
Semivolatile Organics					
1,2-Dichlorobenzene	2.20E-01	7.90E-01	1.50E+00	2.20E-01	2.20E-01
1,4-Dichlorobenzene	1.30E-01	8.10E-01	2.00E+00	1.30E-01	1.30E-01
1-Chloronaphthalene	1.60E-01	4.80E+00	1.40E+01	1.60E-01	1.60E-01
2,4-Dimethy lphenol	6.40E-02	8.10E-01	1.90E+00	6.40E-02	6.40E-02
2-Chloronaphthalene	5.00E-01	8.30E-01	1.50E+00	5.00E-01	5.00E-01
2-Methy Inaphthalene	4.70E-01	7.20E-01	2.40E+00	4.70E-01	4.70E-01
3-Methylcholanthrene	2.50E-02	1.60E+00	3.20E+00	2.50E-01	2.50E-01
Acenaphthene	2.20E+00	8.10E-01	1.80E+00	1.80E+00	8.10E-01

TABLE 3-12

EXPOSURE POINT CONCENTRATIONS

	EAFOSU ON-BASE EA	AST SOLDIER CREEK S (CURRENT SCENARIO)	EAFOSURE FOINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SEDIMENTS (CURRENT SCENARIO)	MENTS	
	Maximum Detected	<u>.</u>		RME Exposure Point	Average Exposure Point
(Themical	Concentration (mg/kg)	Mean [*] (mg/kg)	(mg/kg)	Concentration (mg/kg)	Concentration (mg/kg)
Acetophenone	1.10E-01	8.00E-01	1.70E+00	1.10E-01	1.10E-01
Anthracene	4,401;+00	1.20E+00	4.00E+00	4.00E+00	1.20E+00
Benzo(a)anthracene	9.101:+00	2.90I:+00	1.30E+01	6.10E+00	2.90E+00
Benzo(a)pyrene	1.101:+01	3.20E+00	1.30E±01	1.10E±01	3.20E+00
Benzo(b)fluoranthene	1.30F+01	3.80E+00	10+3061	1.30E+01	3.80E+00
Benzo(g.h.i)pery lene	4.50E+00	1.60E+00	5.30E+00	4.50E+00	1.60E+00
Benzo(k)fluoranthene	1.20E+01	3.00E+00	1.20E+01	1.201:+01	3.00E+00
Benzoie acid	2.80E-01	3.80E+00	8,70E+00	2.80E-01	2.80E-01
Butyl benzyl phthalate	5.10101	8.10E-01	1.50E+00	5.10E-01	5.10E-01
Chrysene	1.20E+01	4.00E+00	1.70E+01	1.20E+01	4.00E+00
Di-n-butyl phthalate	6.80E-02	8.10E-01	1.80E+00	6.80E-02	6.80E-02
Dibenz(a,h)anthracene	1.90[:+00	7.80E-01	L.80E+00	1.80E+00	7.80F-01
Dibenzofuran	1.50E+00	6.70E-01	1.90E+00	1.50E+00	6.70E-01
Fluoranthene	3.201+01	9.80E+00	7.80E+01	3.201;+01	9.80E+00
Fluorene	2.50E+00	7.70E-01	1.701;+00	1,70E+00	7.70F-01
Indeno(1,2,3-cd)pyrene	4.60E+00	1.70E+00	5.70E+00	4.60E+00	1.70E+00
Naphthalene	2.101:+00	9.40E-01	3.20E+00	2.10E+00	9.40E-01
Phenanthrene	10+3108	5.90E+00	2.70E+01	1.80E+01	5.90E+00
Pyrene	1.70E±01	6.20E+00	4.10E+01	1.70E+01	6.20E+00
bis(2-Ethylhexyl)phthalate	1.30E+01	2.80E+00	1.40E+01	1.30E+01	2.80F:+00
Volatile Organics					
1.1.2,2-Tetrachloroethane	2.70E-03	5.90E-03	7.701:-03	2.70E-03	2.70E-03
1,1-Dichloroethane	1.60E-03	5.90E-03	7.90E-03	1.60E-03	1.60E-03
2-Butanone (MEK)	4.80E-02	1.40E-02	2.30E-02	2.30E-02	1.40E-02
Acetone	2.60E-01	5.80E-02	1.50E-01	1.50E-01	5.80E-02
Benzene	2.10E-02	5.40E-03	6.80E-03	6.80E-03	5.40E-03
Carbon disulfide	9,2015-03	5.80E-03	7.90E-03	7.90E-03	5.80E-03
Chlorobenzene	2.10E+00	1.30E-01	1.90E-01	1.90E-01	1.30E-01

TABLE 3-12

EXPOSURE POINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SEDIMENTS (CURRENT SCENARIO)

Maximum Detected Concentration (Themical (mg/kg)	Detected				Average
				Exposure Point	Exposure Point
	ration	Mean ^{a,b}	5:q: _w .T.).1	Concentration	Concentration
	(g)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Chloromethane 2.50F-02	-02	1.20E-02	1.70E-02	1.70E-02	1.20E-02
Ethylbenzene 8.10E-03	-03	6.10E-03	8.40E-03	8.10E-03	6.101:-03
Methylene chloride 2.101-02	-02	5.00E-03	6.50E-03	6.50E-03	5.00F-03
Styrene 3.60E-02	-02	8.10E-03	1.20E-02	1.20E-02	8.10E-03
Trichloroethene 1.90E-03	-03	5.90E-03	7.70E-03	1.90E-03	1.901:-03

Notes

- a. Surface (0-0 5 feet) sediment data are used in the calculations.
- b. One half the detection limit is used for all nondetects when calculating values.
- c. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming lognormal distribution.
- d. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used as the RME exposure point concentration.
 - e. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure point concentration.

TABLE 3-13

EXPOSURE POINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SEDIMENTS (FUTURE SCENARIO)

				RME	Average
	Concentration	Mean"	5'4","1.)[1	Concentration	Exposure Point
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Metals					
Antimony	7.60E±00	4.90E+00	5.30E+00	5.30E+00	4.9015+00
Beryllium	8.20E-01	4.50E-01	5.90E-01	5.90E-01	4.501:-01
Cadmium	8.40E+02	5.80E±01	4.60E+02	4.60E+02	5.80E+01
Chromium	2.80E+03	4.20E+02	9.10E+02	9.10E+02	4.2013+02
Cobalt	5.00E+01	1.20E±01	1.60E+01	1.60E+01	1.2015+01
Lead	5.30E+02	1.40E±02	3.40E+02	3.40E+02	1.40E+02
Mercury	8.30E+00	7.00E-01	1.10E+00	1.10E+00	7,001;-01
Nickel	1.40E+03	1.30E+02	2.20E+02	2.201:+02	1.30E+02
Silver	1.50E+01	4.50E+00	8.20E+00	8.20E+00	4.50E+00
Thallium	1.30E±02	1.40E+02	1.90E+02	1.30E+02	1.30E+02
Vanadium	8.301:+01	2.50E+01	3.00E+01	3.00E+01	2.50E+01
Pesticides/PCBs					
(1(1(1-,+'+	4.20E-02	6.80E-02	2.00E-01	4.20E-02	4.201;-02
Aroclor 1254	1.4015+01	1.60E+00	4.90E+00	4.90E+00	1.60E±00
Endosulfan II	9.30E:-02	7.10E-02	2.3015-01	9.30E-02	7.10E-02
gamma-C'hlordane	2.301:-02	3.50E-02	1.10E-01	2.30E-02	2.301:-02
Semivolatile Organics					
1,2-Dichlorobenzene	2.2015-01	7.30E-01	1.10E+00	2.20E-01	2.20E-01
I,4-Dichlorobenzene	1.10E+00	7.50E-01	1.30E+00	1.10E+00	7.50E-01
1-Chloronaphthalene	2.30E-01	4.30E+00	1.40E+01	2.30E-01	2.30E-01
2-Chloronaphthalene	5.00E-01	7.00E-01	1.30E+00	5.00E-01	5.00E-01
2-Methylhaphthalene	4.50E+00	7.70E-01	1.50E+00	1.50E+00	7.70E-01
Acenaphthene	2.20E+00	6.50E-01	1.10E+00	1.10E+00	6.50E-01
Anthracene	4.40E+00	9.20E-01	1.80E+00	1.80E+00	9.20E-01

TABLE 3-13

EXPOSURE POINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SEDIMENTS (FUTURE SCENARIO)

				DAIL	
				KNIE	Average
	Maximum Detected	-		Exposure Point	Exposure Point
	Concentration	Mean	UCL*.b.c	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzo(a)anthracene	9.10E±00	2.20E+00	5.90E+00	5.90E+00	2.20E±00
Benzo(a)py rene	1.10E+01	2.30E+00	6.10E+00	6.1015+00	2.30E+00
Benzo(b)fluoranthene	1.30E±01	2.80E+00	9.30E+00	9.3015+00	2.80E+00
Benzo(g.h.i)pery lene	4.50E±00	1.20E+00	2.80E+00	2.80E+00	1.20E+00
Benzo(k)fluoranthene	1.20E+01	2.20E+00	6.00E+00	6.00E+00	2.20E+00
Chrysene	1.20E+01	3.00E+00	9.40E+00	9.40E+00	3.00E+00
Di-n-butyl phthalate	3.0015-01	7.10E-01	1.30E+00	3.00E-01	3.0015-01
Dibenz(a,h)anthracene	1.9015+00	6.20E-01	1.00E+00	1.00E+00	6.20E-01
Dibenzoturan	1.501:+00	6.20E-01	1.10E+00	1.10E+00	6.20E-01
Fluoranthene	3.20E+01	7.60E+00	2.70E+01	2.70E+01	7.60E+00
Fluorene	2.50E+00	6.50E-01	1.10E+00	1.10E+00	6.50E-01
Indeno(1,2,3-ed)py rene	4.60E+00	1.20E+00	2.40E+00	2.40E+00	1.20E:+00
Naphthalene	4.00E+00	9.60E-01	2.20E+00	2.20E+00	9.60E-01
Phenanthrene	1.801:+01	4.30E+00	1.50E+01	1.50E+01	4 301, +00
Pyrene	1,701;+01	4.60E±00	1.70E+01	1.70E+01	4.60[:+00
bis(2-1'thy lhexy l)phthalate	1.90E+01	3.50E±00	9.90E+00	00+306.6	3.50E+00
VolatileOrganics					
2-Butanone (MEK)	4.80E-02	4.00E-02	3.60E-02	3.60E-02	3.60E-02
Acetone	2.60E-01	7.90E-02	1.50E-01	1.50E-01	7.90E-02
Carbon disultide	9.20E-03	2.00E-02	1.40E-02	9.20E-03	9.20E-03
Chlorobenzene	1.80E+01	6.90E-01	6.90E-01	6.90E-01	6.90E-01
Chloromethane	2.50E-02	3.90E-02	2.90E-02	2.50E-02	2.50E-02
Ethy Ibenzene	8.10E-03	2.00E-02	1.50E-02	8.10E-03	8.10E-03
Methylene chloride	2.10E-02	1.90E-02	1.30E-02	1.30E-02	1.30E-02
Styrene	3.60E-02	2.10E-02	1.70E-02	1.70E-02	1.70E-02

TABLE 3-13

EXPOSURE POINT CONCENTRATIONS ON-BASE EAST SOLDIER CREEK SEDIMENTS (FUTURE SCENARIO)

				RME	Average
	Maximum Detected			Exposure Point	Exposure Point
	Concentration	Mean	ΩCL^{wpc}	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Toluene	1.30E-02	2.00E-02	1.50E-02	1.30E-02	1.30E-02
Xy lenes (total)	6.10E-03	2.00E-02	1.40E-02	6.10E-03	6.10E-03

Notes

- a Sediment data from all depths are used in the calculations.
- b. One half the detection limit is used for all nondetects when calculating values.
- c. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming lognormal distribution.
- d. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used
 - as the RME exposure point concentration.

TABLE 3-14

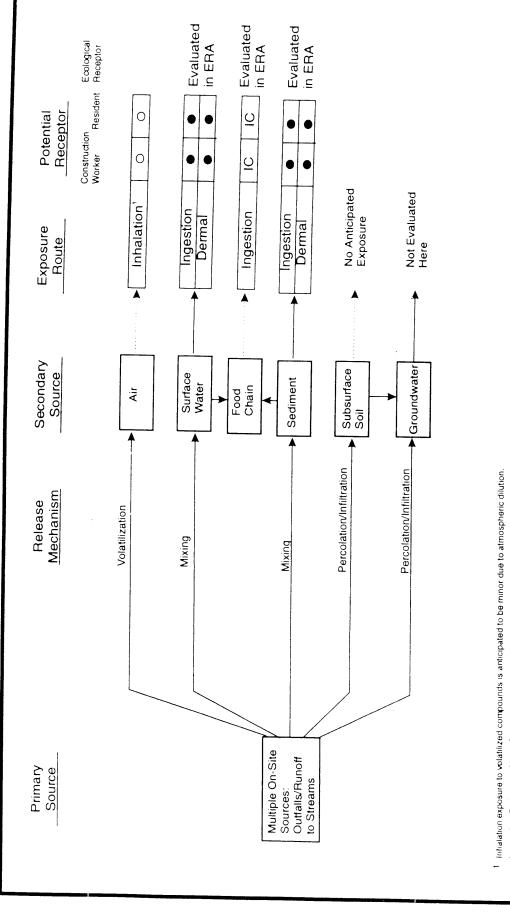
EXPOSURE POINT CONCENTRATIONS OFF-BASE EAST SOLDIER CREEK SEDIMENTS (CURRENT AND FUTURE SCENARIOS)

Maximum Detected Mean*b UCL*BS Concentration (mg/kg) (RME	Average
Concentration Mean*b UCL*bs letals (mg/kg) (mg/kg) (mg/kg) letals 4.80E+00 4.20E+00 4.90E+00 deform 3.60E+01 9.00E+01 s.10E+01 3.60E+01 9.00E+02 s.10E+01 7.50E+01 3.90E+02 s.10E+02 4.70E+00 8.70E+01 level 4.70E+02 9.40E+02 s.10E+03 4.70E+01 1.30E+02 cine 4.70E+01 1.30E+02 lene 4.70E+01 1.30E+02 lene 4.70E+01 7.30E+02 lene 4.70E+01 7.30E+02 lene 4.70E+01 7.60E+01 lene 4.70E+02 3.60E+01 1.50E+01 lene 4.70E+02 3.60E+01 1.50E+01 lene 4.70E+02 3.60E+01 3.30E+01 lene 4.70E+02 3.60E+01 3.30E+01 lene 4.70E+02 3.60E+01 3.30E+01 lene 4.70E+03 3		Maximum Detected			Exposure point	Exposure Point
remical (mg/kg) (mg/kg) (mg/kg) detals 4.80E+00 4.20E+00 4.90E+00 6.70E+01 3.60E+01 9.00E+01 2.50E+01 7.50E+00 3.90E+02 8.10E+02 4.70E+00 8.70E+00 8.10E+02 4.70E+00 8.70E+02 1.00E-01 4.70E+01 1.40E+02 2.70E+01 1.70E+01 1.40E+02 2.70E+01 1.70E+01 2.80E+01 cene 2.10E+03 4.70E+01 7.30E+02 cene 4.20E+02 3.60E+01 7.30E+02 lene 4.20E+02 3.60E+01 7.30E+02 lene 4.20E+02 3.60E+01 7.30E+02 lene 4.20E+02 3.60E+01 7.30E+02 lene 4.20E+02 3.60E+01 1.20E+00 lene 4.20E+02 3.60E+01 5.00E+01 lene 4.70E+02 3.60E+01 5.00E+01 lene 4.70E+02 3.60E+01 3.30E+01 lene 4.70E+01 <th></th> <th>Concentration</th> <th>Mean^{a b}</th> <th>$\Pi \mathbf{CL}^{\mathbf{a},\mathbf{p},c}$</th> <th>Concentrationd</th> <th>Concentration</th>		Concentration	Mean ^{a b}	$\Pi \mathbf{CL}^{\mathbf{a},\mathbf{p},c}$	Concentrationd	Concentration
letals 480E+00 4.20E+00 4.90E+00 6.70E-01 3.60E+01 9.00E-01 2.50E+01 3.90E+02 3.90E+02 8.10E+01 4.70E+00 8.70E+00 1.00E-01 4.70E+00 8.70E+00 1.00E-01 4.70E+01 2.80E+01 1.00E-01 4.70E+01 2.80E+01 1.00E-03 4.70E+01 2.80E+01 1.00E-03 4.70E-01 7.30E+02 cene 4.70E-01 7.30E+02 cene 4.70E-01 7.30E+02 lene 4.70E-01 3.70E-01 lene 4.70E-01 3.70E-01 lene 4.70E-01 3.60E-01 lene 4.70E-01 4.70E-01 lene 4.70E-01 3.60E-01 lene 4.70E-01 4.70E-01 lene	C hemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
4.80E+00 4,20E+00 4,90E+00 4,90E+00 6.70E+01 3.60E+01 9.00E-01 9.00E-01 8.10E+00 8.70E+00 8.70E+00 8.70E+00 1.00E+01 4.70E+00 8.70E+00 8.70E+00 1.30E+02 7.10E+01 1.40E+02 9.40E-02 1.30E+03 4.70E+01 1.40E+02 9.40E-02 vene 2.10E+03 4.70E+01 7.30E+02 vene 4.20E+02 3.60E-01 1.10E+02 blene 4.20E+02 3.60E-01 1.20E+02 blene 4.50E-02 3.60E-01 1.20E+02 blene 4.50E-02 3.60E-01 1.20E+02 blene 4.50E-02 3.60E-01 1.50E+01 blene 4.50E-02 3.60E-01 5.50E-01 blene 4.50E-02 3.60E-01 2.50E-01 blene 4.70E-02 3.60E-01 2.50E-01 conganics 5.20E-00 1.40E-01 9.30E-01 conganics 5.20E-00 1.40E-02 1.50	Metals					
6.70E-01 3.60E-01 9.00E-01 2.50E+01 7.50E+00 3.90E+02 8.10E+00 4.70E+00 8.70E+00 1.00E-01 4.90E-02 9.40E-02 1.30E+02 7.10E+01 1.40E+02 2.70E+01 1.70E+01 1.40E+02 2.70E+01 1.70E+01 1.40E+02 2.10E-02 4.70E-01 7.30E+02 2.10E-03 4.70E-01 7.30E+02 2.10E-02 3.60E-01 1.10E+00 4.00E-02 3.60E-01 1.50E+00 4.00E-02 3.40E-01 5.90E-01 4.70E-01 4.10E-01 5.90E-01 4.70E-02 3.60E-01 5.90E-01 4.70E-03 3.60E-01 2.60E-01 4.70E-04 4.70E-05 3.60E-01 2.60E-01 4.70E-05 3.60E-01 2.80E-01 5.80E-01 2.80E-01 2.80E-01 6.40E-02 3.60E-01 2.60E-01 6.40E-02 3.60E-01 2.60E-01 6.40E-02 3.60E-01 2.60E-01 6.40E-02 3.60E-01 2.60E-01 6.40E-02 3.60E-03 2.60E-03 6.00E-03 7.00E-03 8.30E-03 6.00E-03 7.00E-03 8.30E-02 1.20E-02 1.50E-02 8.30E-02 1.20E-02 1.20E-02 8.30E-02 1.20E-02 1.20E-02 8.30E-02 1.20E-02 1.20E-02 8.30E-03 1.20E-03 1.20E-02 8.30E-03 1.20E-03 1.20E-02 8.30E-03 1.20E-03 1.20E-03 8.30E-03 1.20E-03 1.20E-02 8.30E-03 1.20E-03 1.20E-03 8.30E-03 1.2	Antimony	4.80E+00	4.20E+00	4.90E+00	4.80E+00	4.20E+00
2.50E+01	Beryllium	6.70E-01	3.60E-01	9.00E-01	6.70E-01	3.60E-01
8.10E+00 4.70E+00 8.70E+00 1.00E-01 4.90E-02 9.40E-02 1.30E+02 7.10E+01 1.40E+02 1.30E+02 7.10E+01 1.40E+02 2.70E+01 1.70E+01 2.80E+01 rides/PCBs 2.10E-03 4.70E-01 7.30E+02 rene 2.10E-03 4.70E-01 7.30E+02 rene 4.20E-02 3.60E-01 1.10E+02 lene 4.90E-02 3.60E-01 1.10E+02 lene 4.90E-02 3.60E-01 1.20E+02 lene 4.90E-02 3.60E-01 1.20E+00 lene 4.70E-02 3.60E-01 5.90E-01 lene 4.70E-02 3.40E-01 5.90E-01 phthalate 5.20E+00 1.40E+00 2.60E-01 geOrganics 8.30E-01 1.90E-02 2.60E-01 k) 8.30E-02 1.20E-03 1.90E-02 k) 8.30E-03 1.20E-03 1.90E-03	Cadmium	2.50E+01	7.50E+00	3.90E+02	2.50E±01	7.50E+00
ides/PCBs 1,00E-01 4,90E-02 9,40E-02 ides/PCBs 1,30E+02 7,10E+01 1,40E+02 ides/PCBs 2,70E+01 1,70E+01 1,40E+02 tile Organics 2,10E-03 4,70E-01 7,30E+02 rene 4,20E-02 3,60E-01 1,0E+00 lene 4,20E-02 3,60E-01 1,0E+00 lene 4,20E-02 3,60E-01 1,0E+00 lene 4,00E-02 3,60E-01 1,0E+00 lene 4,00E-02 3,60E-01 1,0E+00 lene 4,00E-02 3,60E-01 1,50E+01 lene 4,00E-02 3,60E-01 1,50E+01 lene 4,00E-02 3,60E-01 1,50E+01 lene 4,00E-02 3,60E-01 9,30E-01 lene 4,00E-02 3,60E-01 9,30E-01 lene 4,00E-01 4,10E-01 9,30E-01 lene 4,00E-01 1,40E-01 9,30E-01 lene 2,20E-00 1,40E-01 9,30E-01	Cobalt	8.10E+00	4.70E+00	8.70E+00	8.10E+00	4.70E+00
ides/PCBs 7.10E+01 1.40E+02 ides/PCBs 2.70E+01 1.70E+01 2.80E+01 tides/PCBs 2.10E+03 4.70E-01 7.30E+02 tide 2.10E-03 4.70E-01 7.30E+02 cene 4.20E-02 3.60E-01 1.10E+00 lene 4.20E-02 3.60E-01 1.10E+00 lene 4.20E-02 3.60E-01 1.20E+01 lene 4.20E-02 3.60E-01 1.20E+01 lene 4.00E-02 3.60E-01 1.20E+01 lene 4.00E-02 3.60E-01 1.50E+01 lene 4.00E-02 3.60E-01 5.90E-01 lene 4.70E-01 4.10E-01 5.90E-01 lene 4.70E-01 4.10E-01 5.90E-01 lene 5.20E-01 4.10E-01 2.60E-01 lene 5.20E-00 1.40E+00 2.60E-01 lene 5.20E-00 1.40E+00 1.50E+01 lene 6.00E-03 1.90E-01 2.60E-01 lene	Mercury	1.0015-01	4.90E-02	9.40E-02	9.4015-02	4.90E-02
ides/PCBs 2.70E+01 1.70E+01 2.80E+01 ides/PCBs 2.10E-03 4.70E-01 7.30E+02 title Organics 4.20E-02 3.60E-01 7.30E+02 cee 4.20E-02 3.60E-01 1.10E+00 lene 4.90E-02 3.60E-01 1.10E+00 lene 4.90E-02 3.60E-01 1.50E+01 lene 4.00E-02 3.60E-01 7.60E-01 hene 4.70E-02 3.40E-01 1.50E+00 kn 4.70E-01 4.10E-01 5.90E-01 phthbalate 5.20E+00 1.40E-01 3.60E-01 9.30E-01 g Organics 8.30E-02 3.60E-01 9.30E-01 9.30E-01 k) 8.30E-03 6.00E-03 7.00E-03 7.00E-03 k) 8.30E-03 1.20E-02 1.90E-02 1.90E-02	Thallium	1.30E+02	7.10E+01	1.40E+02	1.30E+02	7.10E+01
ides/PCBs 4.70E-01 7.30E+02 title Organics 2.10E-03 4.70E-01 7.30E+02 cut 2.10E-02 3.60E-01 7.30E+02 rate 4.20E-02 3.60E-01 1.10E+00 lene 4.90E-02 1.90E+00 8.60E+01 lene 4.90E-02 3.60E-01 7.60E-01 shene 4.00E-02 3.40E-01 1.20E+00 dene 4.70E-02 3.40E-01 8.10E-01 shithhalate 5.20E-01 9.30E-01 2.60E-01 phthhalate 5.20E+00 1.40E-02 3.60E-01 2.60E-01 e Organics 8.30E-03 6.00E-03 7.00E-03 7.00E-03 k) 8.30E-03 1.20E-02 1.90E-02 1.90E-01	Vanadium	2.7015+01	1.70E+01	2.80E+01	2.70E±01	1.70E+01
tile Organics 4.70E-01 7.30E+02 cene 4.70E-02 7.30E+02 cene 4.20E-02 3.60E-01 1.10E+00 lene 4.90E-02 3.60E-01 1.10E+00 lene 4.90E-02 3.60E-01 1.10E+00 lene 4.90E-02 3.60E-01 7.60E-01 lene 4.00E-02 3.60E-01 7.60E-01 lene 4.00E-02 3.40E-01 1.50E+00 4.70E-02 3.40E-01 5.90E-01 5.90E-01 4.70E-02 3.60E-01 9.30E-01 5.90E-01 eOrganics 3.30E-01 1.40E-02 3.60E-01 2.60E-01 EOrganics 8.30E-01 1.40E+00 1.50E+01 1.50E+01 EOrganics 8.30E-03 6.00E-03 7.00E-03 7.00E-03 K) 8.30E-02 1.20E-02 1.90E-02 1.90E-02	Pesticides/PCBs					
tutle Organics 4.70E-01 7.30E+02 cut 4.20E-02 3.60E-01 1 10E+00 lene 4.90E-02 3.60E-01 1 10E+00 lene 4.90E-02 3.60E-01 1 10E+00 lene 4.90E-02 3.60E-01 7.60E-01 hene 4.00E-02 3.60E-01 1.20E+00 dene 4.70E-02 3.40E-01 1.50E+00 sande-01 4.70E-01 4.10E-01 8.10E-01 dene 4.70E-01 4.10E-01 8.10E-01 sande-01 4.10E-01 9.30E-01 9.30E-01 phthalate 5.20E+00 1.40E-00 1.40E-01 2.60E-01 e Organics 8.30E-03 6.00E-03 7.00E-03 7.00E-03 K) 8.30E-03 1.20E-02 1.90E-02 1.90E-02	Dieldrin	2.10E-03	4.70E-01	7.30E+02	2.10E-03	2.1015-03
tile Organics 4.20E-02 3.60E-01 1 10E+00 lene 4.90E-02 3.60E-01 1 10E+00 lene 4.90E-02 1.90E+00 8.60E+01 llene 4.90E-02 3.70E-01 7.60E-01 lhene 4.00E-02 3.40E-01 1.50E+00 4.70E-02 3.40E-01 5.90E-01 8.30E-01 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 eOrganics 5.20E+00 1.40E+00 1.50E+01 e Organics 8.30E-03 6.00E-03 7.00E-03 K) 8.30E-03 1.20E-02 1.90E-02	Ludosultan II	2.10E-03	4.70E-01	7.30E+02	2.10E-03	2.10E-03
cene 4.20E-02 3.60E-01 1 10E+00 lene 4.90E-02 1 90E+00 8 60E+01 plene 1.30E-01 3.70E-01 7.60E-01 thene 4.00E-02 3.60E-01 1.20E+00 d.70E-02 3.40E-01 1.50E+00 8.30E-01 3.10E-01 8.10E-01 4.70E-01 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 phthalate 5.20E+00 1.40E+00 1.50E+01 e Organics 8.30E-03 6.00E-03 7.00E-03 K) 8.30E-02 1.20E-02 1.90E-02	Semivolatile Organics					
lene 4.90E-02 1.90E+00 8.60E+01 alene 1.30E-01 3.70E-01 7.60E-01 there 4.00E-02 3.60E-01 1.20E+00 4.70E-02 3.40E-01 1.50E+00 8.30E-01 3.10E-01 5.90E-01 4.70E-03 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 phthalate 5.20E+00 1.40E+00 1.50E+01 e Organics 8.30E-03 6.00E-03 7.00E-03 K) 8.30E-03 1.20E-02 1.90E-02	1,4-Dichlorobenzene	4.20E-02	3.60E-01	1.10E+00	4.20**-02	4.2015-02
lene 1.30E-01 3.70E-01 7.60E-01 thene 4.00E-02 3.60E-01 1.20E+00 4.70E-02 3.40E-01 1.50E+00 8.30E-01 3.10E-01 5.90E-01 4.70E-03 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 phthalate 5.20E+00 1.40E+00 1.50E-01 cOrganics 8.30E-03 6.00E-03 7.00E-03 K) 8.30E-02 1.20E-02 1.90E-02	1-Chloronaphthalene	4.90E-02	1.90E+00	8.60E±01	4.90 8-02	4.90E-02
thene 4.00E-02 3.60E-01 1.20E+00 4.70E-02 3.40E-01 1.50E+00 8.30E-01 3.10E-01 5.90E-01 4.70E-01 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 phthalate 5.20E+00 1.40E+00 1.50E+01 e Organics 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	2-Methylnaphthalene	1.30E-01	3.70E-01	7.60E-01	1.3(E-01	1.30E-01
4,70E-02 3,40E-01 1,50E+00 8,30E-01 3,10E-01 5,90E-01 4,70E-01 4,10E-01 8,10E-01 6,40E-02 3,60E-01 9,30E-01 e Organics 1,40E-00 1,40E+01 K) 8,30E-03 6,00E-03 K) 8,30E-03 6,00E-03 1,20E-02 1,90E-03	Benzo(b)fluoranthene	4.0015-02	3.60E-01	1.20E+00	4.0015-02	4.00E-02
8.30E-01 3.10E-01 5.90E-01 4.70E-01 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 phthalate 5.20E+00 1.40E+00 1.50E+01 e Organics 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	Chrysene	4.7013-02	3.40E-01	1.50E+00	4.70E-02	4.70E-02
4.70E-01 4.10E-01 8.10E-01 6.40E-02 3.60E-01 9.30E-01 phthalate 5.20E+00 1.40E+00 1.50E+01 c Organics 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	Fluoranthene	8.3015-01	3.10E-01	5.90E-01	5.90E-01	3.10E-01
6.40E-02 3.60E-01 9.30E-01 phthalate 2.80E-01 1.90E-01 2.60E-01 e Organics 8.30E-03 1.40E+00 1.50E+01 K) 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	Isophorone	4.70E-01	4.10E-01	8.10E-01	4.70E-01	4.10E-01
phthhalate 2.80E-01 1.90E-01 2.60E-01 phthhalate 5.20E+00 1.40E+00 1.50E+01 c Organics 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	Phenanthrene	6.40E-02	3.60E-01	9.30E-01	6.40E-02	6.40E-02
ophthalate 5.20E+00 1.40E+00 1.50E+01 e Organics 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	Pyrene	2.80E-01	1.90E-01	2.60E-01	2.60E-01	10-306:1
e Organies 8.30E-03 6.00E-03 7.00E-03 K) 3.30E-02 1.20E-02 1.90E-02	bis(2-Ethylhexyl)phthalate	5.20E+00	1.40E+00	1.50E+01	5.20E+00	1.40E+00
K) 8.30E-03 6.00E-03 7.00E-03 3.30E-02 1.90E-02	Volatile Organics			THE PARTY OF THE P		
3.30E-02 1.20E-02 1.90E-02	2-Butanone (MEK)	8.3015-03	6.00E-03	7.00E-03	7.00E-03	6.00E-03
	Acetone	3.30E-02	1.20E-02	1.90E-02	1.90E-02	1.20E-02
4.50E-03 3.10E-03 4.00E-03	Carbon disulfide	4.50E-03	3.10E-03	4.00E-03	4.00E-03	3.10E-03

F96526 [A4SEDS XLS] TABLE 3-14/Sv.md 12/1/97 Imker AFB - Soldier Creek - Long-Term Monitoring Ilind Annual Report

TABLE 3-14

EXPOSURE POINT CONCENTRATIONS OFF-BASE EAST SOLDIER CREEK SEDIMENTS (CURRENT AND FUTURE SCENARIOS)


				RME	Average
	Maximum Detected			Exposure point	Exposure Point
	Concentration	Meanab	$^{\mathrm{GCF}_{\mathfrak{q}}_{\mathrm{P}^{\mathrm{S}}}}$	Concentration	Concentration
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
C'hlorobenzene	1.50E-01	2.10E-02	10E-01	1.105-01	2.10E-02
Methy lene chloride	2.10E-03	2.70E-03	3.20E-03	2.10,03	2.10E-03

Notes

- a Sediment data from all depths are used in the calculations.
- b. One half the detection limit is used for all nondetects when calculating values.
- c. The upper 95 percent confidence limit values (UCL) of the arithmetic mean concentration assuming lognormal distribution.
- d. The concentration associated with the 95 percent UCL or the maximum concentration detected, whichever was lower, was used
- e. The RME exposure point concentration or the mean concentration, whichever was lower, was adopted as the average exposure as the RME exposure point concentration.

point concentration.

Site Conceptual Exposure Model - East and West Soldier Creek Tinker Air Force Base, Oklahoma City, Oklahoma

Incomplete Pathway or Minor Pathway Complete Pathway

O Minor Exposure Route

Complete Exposure Route

IC Incomplete Exposure Route

Woodward-Clyde Consultants In general, the COCs identified in West and East Soldier Creeks consist of volatile and semivolatile organic compounds, PCBs, pesticides, and metals. The toxicity assessment provides the critical toxicity values (CTVs) for the COCs. The CTVs are values developed by the USEPA that are used to evaluate potential cancer risks and noncarcinogenic health hazards associated with chemical exposure.

4.1 TOXICITY ASSESSMENT OF NONCARCINOGENIC EFFECTS

The noncarcinogenic CTV is known as the reference dose (RfD). Reference doses are based on the premise that noncarcinogenic (i.e., toxic) effects exhibit a threshold. As long as the chronic daily intake (CDI) of a compound is less than the reference dose, no noncarcinogenic health effect is believed to be posed by the exposure. RfDs doses are developed using human and animal studies, and incorporate safety factors to ensure health protection in the most sensitive population.

Substances that produce noncarcinogenic effects are generally thought to have a threshold below which there are no observable adverse health effects. This threshold dose, also known as no-observed-adverse-effect level (NOAEL), is the highest level (determined in epidemiologic studies or animal studies) at which there is no statistically or biologically significant effects of concern, often called the "critical toxic effect." For certain substances, only a LOAEL, or "lowest-observed-adverse-effect level," has been determined. This is the lowest dose of a substance that produces either a statistically or biologically significant indication of the critical toxic effect. The NOAEL or the LOAEL may be used to calculate the RfD of a particular chemical.

RfDs are calculated by dividing the NOAEL (or LOAEL) by uncertainty factors, which generally range from 10 to 1.000. For example, uncertainties include variations in the sensitivity of individuals within a population and the extrapolation of data from experimental animals to humans. The RfD is expressed in units of milligrams of chemical per kilogram of body weight per day (mg/kg-day) for oral exposure.

Dermal RfDs can be derived from oral RfDs by adjusting the oral value to account for the percent of gastrointestinal absorption associated with the study used to derive the RfD (i.e., converting the oral RfD from an "administered" to an "absorbed" dose). However, this approach is not currently recommended by USEPA's Dermal Exposure Assessment: Principles and Applications because of metabolic differences between exposure rates (i.e., oral vs. dermal exposures) (USEPA 1992a). USEPA currently recommends use of oral RfDs to evaluate dermal exposure, although it should be noted that this approach may lead to an underestimation of dermal risk for some compounds (USEPA 1992a). The methodology for deriving RfDs is more fully described in the RAGS (USEPA 1989a).

The USEPA defines a chronic RfD as an estimate of a daily exposure level for the human population that is unlikely to result in deleterious effects during a lifetime (i.e., 70 years according to USEPA guidance). A chronic RfD is used to evaluate the potential noncarcinogenic hazards associated with long-term chemical exposures (7 years to a lifetime). Chronic RfDs for the COCs are shown in **Table 4-1**. For the ingestion route, the RfD is for the administered dose (assuming 100 percent absorption by the gastrointestinal tract) unless otherwise noted. This assumption enhances the conservatism of the RA since many chemicals in the environment are not readily absorbed by the gastrointestinal tract. RfDs have also been developed from many of the carcinogens to account for their noncarcinogenic effects.

The potential for noncarcinogenic effects to occur as a result of exposure is evaluated by comparing the exposure level, or daily chemical intake, over a specified time period (e.g., subchronic or chronic) with a RfD derived for a similar exposure period. A Hazard Quotient (HQ) is derived for each chemical as follows:

HQ = [Average Daily Intake] / [RfD]

If exposure is equivalent to or less than the RfD, the HQ will be 1.0 or less, which represents an intake level unlikely to be associated with potential adverse effect due to the chemical. If exposure exceeds the RfD, the resulting HQ will exceed 1.0, and it will be concluded that a hazard may exist. For each noncarcinogenic chemical of potential concern specific to each

exposure pathway, an HQ will be derived. HQs for each chemical are then summed for each exposure pathway to derive a value referred to as a Hazard Index (HI):

$$HI = HQ1 + HQ2 + HQ3 \dots + HQn$$

HIs greater than 1.0 are generally viewed as indicating that exposure to a particular medium identified in the exposure scenario represents a potential human health hazard. Exposure pathway HIs are summed across pathways whenever appropriate, since individuals may be simultaneously exposed to chemicals via more than one pathway (e.g., to both soil and surface water).

4.2 TOXICITY ASSESSMENT OF CARCINOGENIC EFFECTS

The carcinogenic CTV is termed the slope factor (SF). Slope factors are developed based on a dose-response curve for carcinogenicity of the specific chemicals. As with RfD values, slope factors are developed from human and animal studies and are designed to be health protective (i.e., to overestimate the actual risks). The SF is used to estimate an upperbound probability of an individual developing cancer as a result of exposure to a potential carcinogen. Carcinogens with USEPA-derived SFs are also given an USEPA weight-of-evidence classification whereby potential carcinogens are grouped according to the likelihood that the chemical is a human carcinogen, depending on the quality and quantity of carcinogenic potency data for a given chemical. **Table 4-2** presents the USEPA weight-of-evidence classification system.

In estimating the risk posed by potential carcinogens, it is the common practice of the USEPA and other regulatory agencies to assume that any exposure level is associated with a finite probability, however minute, of producing a carcinogenic response. The USEPA assumes that a small number of molecular events can evoke changes in a single cell that can lead to uncontrolled cellular proliferation. This mechanism for carcinogenicity is referred to as "non-threshold" since there is theoretically no level of exposure for such a substance that does not pose a small, though finite, probability of producing a carcinogenic response.

SFs are based primarily on the results of animal studies. There is uncertainty whether all animal carcinogens are also carcinogenic in humans. While many chemical substances are carcinogenic in one or more animal species, only a certain number of chemical substances are known to be human carcinogens. The EPA assumes that humans are as sensitive to all animal carcinogens as the most sensitive animal species. This policy decision is designed to prevent underestimating risk and introduces the potential to overestimate carcinogenic risk.

It is generally assumed by the USEPA in developing SFs that the risk of cancer is linearly related to the dose. A linearized multistage model is commonly used by the USEPA for low-dose extrapolation of experimentally derived data to the low dose range. This conservative mathematical model is based on the multistage theory of carcinogenesis wherein the response is assumed to be linear at low doses. From the slope of the extrapolation curve estimated by the model, the USEPA calculates the upper 95th percent confidence limit of the slope. This value, the SF, expressed in units of (mg/kg-day)⁻¹, is used to convert the average daily intake of chemical, normalized over a lifetime, directly to a cancer risk. This represents an estimation of an upperbound incremental lifetime probability that an individual will develop cancer as a result of exposure to a potential carcinogen. This model provides a conservative estimate of cancer risk at low doses, and is likely to overestimate the actual cancer risk. The USEPA acknowledges that actual SFs are likely to be between zero and the estimate provided by the linearized multistage model (USEPA 1989a). The SFs and weight-of-evidence classifications for the COCs are included in **Table 4-1**.

Risks associated with individual COCs can be derived by multiplying the SF and the estimated CDI (i.e., average daily intake for entire lifetime) for each exposure pathway as follows:

Risk Estimate = $CDI \times SF$

An overall risk estimate for each exposure scenario can be calculated by combining the risk estimates for individual chemicals and exposure routes. Risk estimates are then compared with the USEPA's acceptable risk range of 1×10^{-4} (1 in 10,000) to 1×10^{-6} (1 in 1,000,000) incremental excess lifetime cancer risk (USEPA 1990).

4.3 SOURCES OF CRITICAL TOXICITY VALUES

The RfD and SF values listed in the present RA were obtained from the following sources:

- USEPA's Integrated Risk Information System on-line database system (USEPA 1997a)
- USEPA Region III Risk-based Concentration Table (USEPA Region III 1997b)
- USEPA's Health Effects Assessment Summary Tables (USEPA 1994)

TABLE 4-1
CRITICAL TOXICITY VALUES

Chemical Name	Cancer	Oral RfD	Oral SF
	Class	mg/kg-day	(mg/kg-day) ⁻¹
1,2-Dichlorobenzene	D	9.00E-02 a	(mg/kg day)
1,4-Dichlorobenzene	B2		2.40E-02 b
1,1-Dichloroethane	С	1.00E-01 b	2.101 02
1-Chloronaphthalene		3.00E-02 ¹	
1,1,2,2-Tetrachloroethane	С		2.00E-01 a
2,4-Dimethylphenol		2.00E-02 a	
2-Butanone (MEK)	D	6.00E-01 a	
2-Chloronaphthalene		8.00E-02 a	
2-Methylnaphthalene	D	3.00E-02 ¹	
3-Methylchloanthrene		NTF	NTF
Acenaphthene		6.00E-02 a	
Acenaphthylene		3.00E-02 ¹	
Acetone	D	1.00E-01 a	
Acetophenone	D	1.00E-01 a	
Aldrin	B2	3.00E-05 a	1.70E+01 a
alpha-Chlordane	B2	6.00E-05 a,c	1.30E+00 a,c
Anthracene	D	3.00E-01 a	
Antimony	D	4.00E-04 a	
Aroclor 1254	B2	2.00E-05 a	2.00E+00 (upperbound)
			1.00E+00 (central tendency)
Aroclor 1260	B2		2.00E+00 (upperbound)
			1.00E+00 (central tendency)
Arsenic	A	3.00E-04 a	1.50E+00 a
Benzene	A		2.90E-02 a
Benzidine	A	3.00E-03 a	2.30E+02 a
Benzo(a)anthracene	B2		7.30E-01 h
Benzo(a)pyrene	B2		7.30E+00 a
Benzo(b)fluoranthene	B2		7.30E-01 h
Benzo(g,h,i)perylene		3.00E-02 ¹	
Benzo(k)fluoranthene	B2		7.30E-02 h
Benzoic acid	D	4.00E+00 a	
Beryllium	B2	5.00E-03 a	4.30E+00 a
Bis(2-ethylhexyl) phthalate	B2	2.00E-02 a	1.40E-02 *
Bromoform	B2	2.00E-02 a	7.90E-03 a
Bromomethane	D	1.40E-03 a	
Butyl benzyl phthalate	С	2.00E-01 a	
Cadmium (Food)	B1	1.00E-03 a	
Cadmium (water)	B1	5.00E-04 a	
Carbon disulfide		1.00E-01 a	
Chlorobenzene		2.00E-02 a	
Chloromethane	B2		1.30E-02 b
Chromium (III)	D	1.00E+00 a	
Chromium (VI)	A	5.00E-03 *	
Chrysene	B2		7.30E-03 h

TABLE 4-1

CRITICAL TOXICITY VALUES

Chemical Name	Cancer	Oral RfD	Oral SF
	Class	mg/kg-day	(mg/kg-day) ⁻¹
Cobalt		6.00E-02 ^g	
DDD	B2		2.40E-01 a
DDE	B2		3.41E-01 a
Di-n-butyl phthalate	D	1.00E-01 a	
Di-n-octyl phthalate		2.00E-02 g	
Dibenz(a,h)anthracene	B2		7.30E+00 h
Dibenzofuran	D	4.00E-03 g	
Dibromochloromethane	С	2.00E-02 a	8.40E-02 a
Dieldrin	B2	5.00E-05 a	1.60E+01 a
Endosulfan II		0.002 07 aJ	
Ethanol		NTF	NIF
Ethylbenzene	D	1.00E-01 a	
Fluoranthene		4.00E-02 a	
Fluorene		4.00E-02 a	
Gamma-Chlordane	B2	6.00E-05 a,c	1.30E+00 a,c
Heptachlor epoxide	B2	1.30E-05 a	9.10+00 a
Indeno(1,2,3-cd)pyrene	B2		7.30E-01 h
Iodomethane		NTF	NTF
Isophorone	С	2.00E-01 a	9.50E-04 ª
Lead	B2	NTF	NTF
Methylene chloride	B2	6.00E-02 a	7.50E-03 a
Mercury	D	3.00E-04 bg	
Naphthalene	D	3.00E-02 du	
Nickel	А	2.00E-02 a,e	
Phenanthrene	D	3.00E-02 ¹	
Рутепе	D	3.00E-02 a	
Silver	D	5.00E-03 a	
Styrene		2.00E-01 a	
Thallium	D	8.00E-05 a,f	
Toluene	D	2.00E-01 a	
Trichloroethene	B2	6.00E-03 ^g	1.10E-02 ^g
Vanadium	D	7.00E-03 b	
Vinyl chloride	A		1.90E+00 bg
Xylenes (total)	D	2.00E+00 a	

Notes

- a). EPA's Integrated Risk Information System (USEPA November 1997) on-line database system.
- b). EPA's Health Effects Assessment Summary Tables (USEPA 1994)
- c). RtD and SF for chlordane
- d). Data inadequate for quantitative risk assessment
- e). Subchronic value is used.
- f). RtD value for thallium (I) chloride is used.
- g). EPA, Region III Risk-Based Concentration table (USEPA 1997).
- h). Based on the slope factor of Benzo(a)pyrene x Carcinogenic Equivalency Factor (USEPA 1993).
- 1). The RtD value for pyrene is assumed as the surrogate RtD value for noncarcinogenic PAHs.
- 11 RtD for endosulfan
- NTF No toxicity factors. Surrogate toxicity values for these chemicals are not available, therefore, they were not evaluated in the quantitative risk assessment.

TABLE 4-2

USEPA WEIGHT-OF-EVIDENCE CARCINOGENIC CLASSIFICATION OF CHEMICALS

Group	Description	Description of Evidence
A	Human carcinogen	Sufficient evidence from epidemiologic studies to support a causal association between exposure and cancer.
B1 or B2	Probable human carcinogen	B1 indicates that limited human data are available from epidemiologic studies. B2 indicates sufficient evidence in animals and inadequate or no evidence in humans of carcinogenicity.
С	Possible human carcinogen	Limited evidence of carcinogenicity in animals.
D	Not classifiable as to human carcinogenicity	Inadequate evidence of carcinogenicity in animals.
Е	No evidence of carcinogenicity in humans	No evidence of carcinogenicity in at least two adequate animal tests or in both epidemiologic and animal studies.

Note:

Substances in Groups B and C are considered potential carcinogens.

5.1 PROCEDURE FOR CALCULATION OF POTENTIAL CANCER RISKS AND NONCARCINOGENIC HAZARDS

The purpose of the risk characterization is to estimate the potential health risks associated with site chemicals. The potential health risks for each compound and exposure pathway are estimated in this Section of the RA. These risk estimates are calculated using the intake parameters developed in the exposure assessment (Tables 3-1, 3-2, 3-3, and 3-4), the estimated exposure point concentrations (Tables 3-5 to 3-14), and the CTVs reported in the toxicity assessment (Table 4-1). The CDI calculations are discussed in Section 3.6 and are presented in Attachment A. It should be noted that the CDIs used for calculating HQs are different from those used to estimate cancer risks (CRs). The CDIs used to calculate HQs are developed using the exposure period as an averaging period, while the CDIs used to calculate potential CRs assume lifetime as the averaging period. The approach for carcinogens is based on the assumption that a high dose received over a short period of time is equivalent to a low dose spread over a life-time, while the approach used for noncarcinogens assumes that chemical effects are only relevant during the period of exposure. The CDIs and their corresponding risks and hazards were calculated for each chemical using the arithmetic mean concentration to evaluate average exposure and the RME concentration to evaluate upperbound exposure.

As discussed in **Section 4.0**, the potential noncarcinogenic health hazard is calculated for each compound as the ratio of CDI and respective RfD. The ratio is termed the Hazard Quotient (HQ). The concept of HQ is based on the assumption that most toxicological effects of chemicals occur only after a threshold dose is achieved. The RfD for a compound is an estimate of the threshold concentration for the most sensitive human population associated with the lowest observed adverse effect for that compound. An HQ in excess of 1.0 indicates that the threshold has been exceeded and a potential health hazard may exist, while a value of less than 1.0 indicates the absence of a health hazard.

The summation of HQs for all compounds is termed the Hazard Index (HI). The assumption

of additivity of sub-threshold HQ values in calculating an HI is only valid when the

following conditions are met:

All compounds affect the same target organ

There are no antagonistic or synergistic effects between compounds (little is

known about these interactions for most chemicals)

The first condition is not true for many chemicals, while the second assumption represents a

major source of uncertainty. Assuming that no synergistic effects occur, the assumption of

additivity does not appear to be valid for all compounds. The use of an HI in this RA should

be considered highly conservative and will likely overestimate the potential for a health

hazard.

Potential cancer risks are calculated for each compound as the arithmetic product of the CDI

and the respective SF. The estimated cancer risk for each compound may be summed to

yield an overall cancer risk for each scenario. The basis for this approach is the regulatory

assumption that cancer risks are additive (USEPA 1989a). The approach is very

conservative and likely to overestimate the true cancer risks associated with exposure to the

chemicals of concern.

SUMMARY OF POTENTIAL NONCARCINOGENIC HEALTH 5.2

HAZARD AND CANCER RISKS

The calculation of individual HQs and cancer risks for each receptor, exposure route and

compound are presented in Attachment A and are summarized in Tables 5-1 and 5-2.

Both average exposure and RME hazard indices are less than the threshold value of 1.0 for all

exposure scenarios and stream segments studied in this RA. This indicates that surface water

and sediments in both West and East Soldier Creeks should not pose a noncarcinogenic

health hazard to any on-Base or off-Base populations under current or future stream use conditions.

5-2

Q: F96526 3MR0S01- DOC jdg md | 12.1 97 Finker AFB - Soldier Creek - Long-Term Monitoring As shown on **Tables 5-1** and **5-2**, potential cancer risks associated with all scenarios are less than the Baseline risk level of 10⁻⁴ established by USEPA for identifying sites that require remedial action (USEPA 1991c). These results indicate that exposure to surface water and sediments in West and East Soldier Creeks are not likely to result in an unacceptable cancer risk for any on-Base or off-Base populations under current or future stream use conditions. (Note: Current and future estimated potential cancer risks and hazard indices from surface water exposure for Areas 1 and 3 are the same because there was only one set of data for each area.)

TABLE 5-1

NONCARCINOGENIC HEALTH HAZARDS AND CARCINOGENIC RISKS ASSOCIATED WITH SURFACE WATER AND SEDIMENTS IN SOLDIER CREEK (CURRENT SCENARIO)

AVERAGE RME AVERAGE HAZARD CANCER HAZARD O 0001 ANA NA O 0001 ANA				ON-BASE	ON-BASE WORKER			OFF-BASE	OFF-BASE RESIDENT*	
HAZARD CANCER INDEX RISK INDEX		AVE	RAGE	RN	3	AVE	SAGE	a	RMF	
NDEX RISK INDEX RISK INDEX RISK			HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER		CANCER
TOTAL 0 00001 2E-10 0 0002 2E-08 NA NA NA NA NA NA NA N			INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK
TOTAL 0 00001 2E-10 0 0002 2E-08 NA NA NA NA NA NA NA N	ON-BASE WEST SOLDIER CREEK (AREA 1)									
TOTAL 0 0000 2E-10 0 0004 4E-08 NA NA NA NA 0 0000 0 0005 1E-10 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE WATER INGESTION		0.00001	2E-10	0.0002	2E-08	ΥZ	ΥZ	K Z	× Z
TOTAL 0 0006 4E-10 0.02 2E-07 NA	SURFACE WATER DERMAL EXPOSURE		0.00001	2E-10	0.0004	4E-08	ΥZ	YZ.	ζ Z	. Z
TOTAL 0 0006 9E-10 0.003 1E-07 NA NA NA NA 0.0001 1E-10 NA NA NA NA 0.0001 1E-10 NA NA NA NA 0.0001 1E-08 NA NA 0.0001 0E-07 NA NA 0.0001 0E-07 NA NA 0.0003 1E-08 NA	SEDIMENT INGESTION		9000.0	4E-10	0.02	2E-07	Ϋ́Z	Z Z	. v	i k
TOTAL 0 0006 9E-10 0.03 7E-07 NA	SEDIMENTS DERMAL EXPOSURE ^b		0.00003	1E-10	0.008	4E-07	AN.	ΥZ	Z	Z
NA		TOTAL	9000.0	01-36	0.03	7E-07	Ϋ́N	Ϋ́Z	Z	. Z
February February February February February	OFF-BASE WEST SOLDIER CREEK (AREA 2)									
F	SURFACE WATER INGESTION		V V	۲ Z	N.A.	Y Z	0.0001	HE-10	0 0003	8F-10
HOTAL NA NA NA NA NA 0.002 6E-07 NA NA NA NA 0.002 6E-07 NA NA NA 0.002 6E-07 O.00002 1E-10 0.0003 1E-08 NA NA NA 0.0005 O.0003 5E-10 0.01 2E-07 NA NA NA NA NA 0.0005 3E-08 NA NA NA NA NA NA NA 0.01 1E-08 NA NA NA NA NA 0.000 1E-08 NA NA NA NA NA 0.01 1E-08 NA NA NA NA NA 0.01 1E-08 NA NA NA NA NA 0.01 1E-08 NA NA NA NA 0.01 1E-08	SURFACE WATER DERMAL EXPOSURE		Y Z	ΥZ	NA	Y Z	0.0001	0E+00	0.0002	00+:40
TOTAL NA NA NA NA NA 0.002 6E-07 E 0.00002 1E-10 0.0003 1E-08 NA NA NA 0.0005 0.1 4E-07 TOTAL 0.0008 2E-09 0.05 2E-07 NA	SEDIMENT INGESTION ^b		Y Z	Ϋ́Z	ΥZ	Y Z	0.02	6E-07	0.08	9E-06
TOTAL NA NA NA NA NA NA 0,002 6E-07 E 0,00002 1E-10 0,0003 1E-08 NA NA NA NA 0,0005 1E-07 TOTAL 0,0008 2E-09 0,03 5E-07 NA	SEDIMENTS DERMAL EXPOSURE ^b		Z A	Ϋ́	Y Y	Y Z	0.001	2E-08	0.03	3E-06
Common C		TOTAL	VZ VZ	Y Z	Z,	A'N	0.02	6E-07	0.1	E-05
E 0,00002 1E-10 0,0003 1E-08 NA	ON-BASE EAST SOLDIER CREEK (AREA 3)									
E 0.0003 5E-10 0.01 2E-07 NA	SURFACE WATER INGESTION		0.00002	HE-10	0.0003	1E-08	KZ	۲Z	Y.Z	r Z
TOTAL 0.0005 1E-09 0.03 SE-07 NA NA TOTAL 0.0008 2E-09 0.05 2E-06 NA NA NA NA NA NA NA NA NA NA NA NA NA 0.005 3E-08 NA NA NA NA 14E-08	SURFACE WATER DERMAL EXPOSURE		0.0003	5E-10	0.01	2E-07	Ϋ́Z	ΥZ	K Z	i d Z
TOTAL 0.00003 4E-10 0.01 9E-07 NA NA NA NA NA NA NA NA NA NA NA F NA NA NA NA NA NA 14E-08 TYTAL NA NA NA NA NA 12E-10	SEDIMENT INGESTION ^b		0.0005	1E-09	0.03	SE-07	ΚZ	٧X	K Z	. Z
FOTAL 0.0008 2E-09 0.05 2E-06 NA	SEDIMENTS DERMAL EXPOSURE ^b		0.00003	46-10	10.0	91:-07	Y.Z	Ϋ́N	ΥZ	i e
E NA NA NA 0.001 6E-08 NA NA NA 0.0005 3E-08 NA NA NA 0.001 4E-08 NA NA NA NA 0.001 7E-10 TOTAL NA NA NA 0.001 7E-10		TOTAL	0.0008	2E-09	0.05	2E-06	N A	Ϋ́N	Ϋ́Z	Z Z
HTRE NA NA NA NA 0.001 6E-08 HTRE NA NA NA 0.0005 3E-08 NA NA NA NA 0.001 7E-10 HTML NA NA NA 0.001 7E-10	OFF-BASE EAST SOLDIER CREEK (AREA 4)									
H.R.E. NA NA NA 0.0005 3E-08 NA NA NA NA 0.1 4E-08 NA NA NA NA 0.001 7E-10 H.O.T.S.I. NA NA 0.001 7E-10	SURFACE WATER INGESTION		A'A	ΑZ	Ϋ́Z	A'N	0.001	6E-08	10.0	6F-07
NA NA NA 0.001 7E-10 NA NA NA 0.001 7E-10 NA NA NA 0.001 7E-10	SURFACE WATER DERMAL EXPOSURE		Y Y	Y Z	ΥN	ď Z	0.0005	3E-08	0000	1E-07
NA NA NA 0.001 ZE-10	SEDIMENT INGESTION ^b		A Z	ΥZ	ΚN	ΥZ	0.1	4E-08	0.4	3E-07
TOTAL NA	SEDIMENTS DERMAL EXPOSURE ^b		Y Z	A Z	Ϋ́Z	ΥZ	0.001	7E-10	0.01	1E.08
/0-31 IO VVI VVI VVI		TOTAL	Ϋ́Z	K Z	Ϋ́Z	K Z	0.1	1E-07	0.39	E-06

Note

P90526/RISK SUM XUS/LABLE 5.1 sv md 12/197 Linker AFB - Soldier Creek - Long Term Monitoring Thard Annual Report

a. The hazard indices or cancer risk associated with both adult and child resident b. Surface (0-0.5 feet) sediments data are used in the calculations.

TABLE 5-2

NONCARCINOGENIC HEALTH HAZARDS AND CARCINOGENIC RISKS ASSOCIATED WITH SURFACE WATER AND SEDIMENTS IN SOLDIER CREEK (FUTURE SCENARIO)

			ON-BASE WORNER	_		OFF-BASE RESIDENT	ESIDENT	
	WE	AVERAGE	RME	IE	AVE	AVERAGE	RME	IE.
	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER
	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK
ON-BASE WEST SOLDIER CREEK (AREA 1)								
SURFACE WATER INGESTION	0.00001	2E-10	0.0002	2E-08	K Z	Ϋ́	ΥZ	Ϋ́Z
SURFACE WATER DERMAL EXPOSURE	0 00001	2E-10	0.0004	4E-08	ΥZ	ΥZ	Ϋ́Z	< Z
SEDIMENT INGESTION	0.001	2E-09	0.03	6E-07	Ϋ́Z	YZ .	Ϋ́Z	K Z
SEDIMENTS DERMAL EXPOSURE ^b	0.0001	7E-10	0.03	9E-07	Ϋ́Z	Y Z	Ϋ́N	K Z
TOTAL	. 0.001	3E-09	0.07	1E-06	۲N	NA	K Z	Ϋ́Z
OFF-BASE WEST SOLDIER CREEK (AREA 2)								
STREACE WATER INGESTION	Z Z	Y Z	ĸZ	Y.V.	0.0001	1E-10	0.0003	815-10
STREACE WATER DERMAL EXPOSURE	ΥZ	۲ Z	Ϋ́Z	Ϋ́Z	0.0001	0E+00	0.0002	00±300
SEDIMENT INCESTION ^b	Ϋ́Z	Y Z	AZ AZ	ΥN	0.02	6E-07	1.0	9E-06
SEDIMENTS DERMAL EXPOSURE ^b	ζ Z	V Z	ΥZ	ΥZ	0.001	2E-08	0.02	3 <u>E-06</u>
LOTAL	K Z	ΑZ	ΥZ	VV	0.02	6E-07	1.0	11.05
ON-BASE EAST SOLDIER CREEK (AREA 3)								
SURFACE WATER INGESTION	0.00002	1E-10	0.0003	1E-08	KZ Z	Ϋ́Z	ď.	Z Z
SURFACE WATER DERMAL ENPOSURE	0.0003	5E-10	0.01	2E-07	¥Z	Ϋ́Z	Ź	Ϋ́Z
SEDIMENT INGESTION ^b	0.001	8E-10	0.02	3E-07	KZ.	Ϋ́Z	Ϋ́Z	Z
SEDIMENTS DERMAL EXPOSURE ^b	0 00004	31:-10	0.01	SE-07	K Z	イン	Ż	Ϋ́Z
LOTAL		2E-09	0.05	1E-06	Ϋ́Z	NA	N.A.	NA
OFF-BASE EAST SOLDIER CREEK (AREA 4)								
SURFACE WATER INGESTION	K Z	N.A	K Z	Y Z	0.001	6E-08	0.01	64:-07
STREACE WATER DERMAL EXPOSURE	K Z	Y Z	ΥZ	A Z	0.0005	3E-08	1000	1E-07
SEDIMENT INGESTION	K Z	K Z	Ϋ́Z	NA V	0.1	4E-08	† "0	3E-07
SEDIMENTS DERMAL EXPOSURE	K Z	ΥZ	Ϋ́Z	NA V	0.001	7E-10	Tota	11:-08
TOTAL		K Z	NA	NA	0.1	1E-07	6.4	1E-06

Note

a. The hazard indices or cancer risk associated with both adult and child resident
 b. Sediment data collected from all depths are used in the calculations

Poos20 JERN, SUM XI XI XI BILE 5, 258 and 12.137 Indee AFE 5 Soldier Creek, Long Term Mondoring. Ind. Annual Report

The establishment of health-based Remedial Action Objectives (RAOs) (i.e., "cleanup goals") serves as an important means of guiding remedial activities. In general, development of health-based RAOs is warranted whenever a site is found to pose an unacceptable risk to either human health or the environment, and "cleanup" standards promulgated by state or federal agencies are not available. The approach used to develop health-based cleanup goals is derived from the RA process, which is a process whereby the magnitude of potential cancer risks and other health effects associated with site contaminants can be evaluated quantitatively. A human health-based cleanup goal is established by "back-calculating" a health protective contaminant concentration, given a target risk which is deemed acceptable, and using realistic intake factors to represent potentially exposed populations.

The approach used in this document to develop cleanup goals incorporates RME assumptions and reasonable site use scenarios so that residual risks posed by the site after corrective action are within a health-protective range. It is important to note that, since the RME is meant to represent the most exposed individual in a population, the estimates provided herein are conservative. That is, because cleanup goals developed using RME assumptions are health-protective of the most exposed individual in a population, they will be health-protective for all potentially exposed individuals within that population.

The approach used to calculate RAOs in this document is the same as that used in the previous RAs performed by WCFS (1996, 1997b). Risk-based RAOs were calculated for each chemical using the most conservative exposure scenario, that is, the scenario associated with the largest risk or hazard. For COCs found off-Base, the largest risks and hazards were associated with residential exposure scenarios. For COCs found only in the on-Base portions of the creek, the construction worker scenario is the only applicable scenario, and thus was used to calculate RAOs.

Human health RAOs are calculated based on both the carcinogenic and noncarcinogenic properties of the COCs. Four sets of human health RAOs are developed in this RA. For carcinogens, RAOs were calculated based on target risk levels of 10⁻⁶ (one in a million), 10⁻⁵

(one in one hundred thousand), and 10⁻⁴ (one in ten thousand). These three values encompass the acceptable risk range of 10⁻⁶ to 10⁻⁴ identified by USEPA. For noncarcinogens, RAOs were calculated based on a target Hazard Index of 1.0. The equations used to calculate RAOs are presented below. These equations were used by WCFS (1996, 1997b) and were used here to preserve continuity between the RAs previously prepared by WCFS (1996, 1997b) and this current RA.

For carcinogens

RAO = (Risk Assessment Concentration/Calculated Risk) (Target Risk)

For noncarcinogens

RAO = (Risk Assessment Concentration/Calculated Hazard) (Target Hazard)

where

Risk Assessment Concentration = The maximum chemical exposure point concentration used in the RA

Calculated Risk = The highest calculated risk associated with the exposure point concentration

Target Risk = 10^{-6} , 10^{-5} , and 10^{-4}

Calculated Hazard = The highest calculated hazard associated with the exposure point concentration

 $Target\ Hazard = 1.0$

The RAOs for chemicals in sediment are summarized in **Table 6-1**. For chemicals with both carcinogenic and noncarcinogenic RAOs, the lower level of these values is the health-protective value. Because surface water in the creek is a dynamic medium that is constantly changing, it is inappropriate to develop RAOs for chemicals in surface water. However, by using the same approach in calculating the RAOs, health-based indicators of water quality were developed for chemicals in surface water and are summarized in **Table 6-2**.

Q: F96526 3MR0S01- DOC: jdg md: 12:197 Tinker: AFB - Soldier Creek - Long-Term Monitoring Third Annual Report

TABLE 6-1 RISK-BASED CLEANUP LEVELS FOR CHEMICALS IN SEDIMENTS

Chemical 1,1,2,2 Tetrachloroethane 1,1 Dichloroethane 1,2 Dichloroethane 1,2 Dichloroethane 1,4 Dichloroethane 1,4 Dichloropaphthalene 2,4-Dimethylphenol 2,2-Buranone (MEK) 2,-Chloromaphthalene 2,-Chloromaphthalene 3,-Methylmaphthalene 4,-HDD	RME(*) (mg/kg) 2.70E-0.3 1.60E-0.3 7.30E-0.1 1.10E-00 2.30E-0.1 6.40E-0.2 3.60E-0.2	Dermal HQ	Ingestion	Total	Dermal Cancer Risk	Ingestion Cancer	Total	Noncarcinogenic Action Level ^(c)	Action ' :vel ⁽⁴⁾ (Risk = 1 x 10-6)	Action Level ⁽⁴⁾ (Risk = 1 x 10-5)	Action Level ⁽⁴⁾ (Risk = 1 x 10-4)
Chemical 1, 1, 2, 2 Tetrachlorocthane 1, 1 Ducklorocthane 1, 2 Ducklorocthane 1, 2 Ducklorocenzene 1, 2 Ducklorocenzene 1, 4 Ducklorocenzene 1, 4 Ducklorocentane 2, 4 Dunethylphenol 2, 2 Unmethylphenol 3, 4 Unmethylphenol 2, 4 Unmethylphenol 3, 4 Unmethylphenol 3, 4 Unmethylphenol 3, 4 Underbylphenol 4, 4 1000	RME** (mg/kg) 2.70E-03 1.60E-03 7.30E-01 1.10E+00 2.30E-01 6.40E-02 3.60E-02	Dermal HQ	Ingestion	Total	Cancer Risk	Cancer	Total	Action Level(1)	(Risk = 1 x 10-6)	(Risk = 1 x 10-5)	(Risk = 1 x 10-4)
Chemical 11.2.2 Tetrachiorechane 1.1 Dichloroechane 1.2 Dichloroechane 1.4 Dichloroechane 1.4 Dichloroechane 2.4 Dimethylphenol 2.8 Dimethylphenol 2.8 Dimethylphenol 2.8 Dimethylphenol 2.8 Dimethylphenol 3. Michylphenol 3. Michylphalene 3. Methylnaphhalene 3. Methylnaphhalene 3. Methylnaphhalene 3. Methylnaphhalene 4.4 DDD	(mg/4g) 2 706-03 1 606-03 7 306-01 1 106+00 2 306-01 6 406-02 3 606-02	ÒΗ	9		Risk				•		
11.2.2 Tetrachlousethane 1.1 Duchlousethane 1.2 Duchlousethane 1.4 Duchlousethane 1.4 Duchlousethane 1.4 Duchlousethalene 2.4 Dunnethylphenol 2.5 Butanone (MEK) 2.6 Chloromaphthalene 2.7 Methylphalene 3. Methylphalene 3. Methylphalene 3. Methylphalene 4.4 DDD	2 70E-03 1 60E-03 7 30E-01 1 10E+00 2 30E-01 6 40E-02 3 60E-02	-	-	EOH		Risk	Cancer Risk	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1.1 Dichloroethane 1.2 Dichloroethane 1.4 Dichlorobenzene 1.4 Dichlorobenzene 2.4 Dimethylphenol 2.8 Unmethylphenol 2.8 Unmethylphenol 2. Chloromaphthalene 2. Methylnaphthalene 3. Methylhalphalene 3. Althylbolanthrene 4.4 1 DDD	1 60E.03 7 30E.01 1 10E+00 2 30E-01 6 40E-02 3 60E-02				3.7E-12	1 89E-12	S 59E-12		4 83E+02	4 83E+03	4 83E+04
1,2 Duchlorobenzene 1,4-Duchlorobenzene 2,4-Dumethylphenol 2,8-Unmethylphenol 2,8-Unmonaphhalene 2,7-Unmonaphhalene 2,7-Unmonaphhalene 3,7-Unmonaphhalene 4,7-DDD	7 30E-01 1 10E+00 2 30E-01 6 40E-02 3 60E-02	3 07E-10	1 57E-10	4 64E-10			•	3 45E+06 (*)			
1.4-Dichlorobenzene 2.4-Dimethylphenol 2.8-Unmethylphenol 2.8-Unmono (MEK) 2. Chloromphhalene 2. Methylnaphhalene 4.1DD	1 10E+00 2 30E-01 6 40E-02 3 60E-02	1 \$6E.07	7 94E-08	2 35E-07			-	3 10E+06 (*)			
1-Chloronaphthalene 2.4-Dimethylphenol 2-Butanone (NEK) 2-Chloronaphthalene 2-Methylnaphthalene 3-Methylcholanthene	2 30E-01 6 40E-02 3 60E-02				181E-11	9 23E-11	1 10E-10	3	9 96E+03	9 96E+04	9 96E+05
2.4-Dimethylphenol 2-Butanone (MEK) 2-Chlorouaphhalene 2-Methylnaphthalene 3-Methylcholanthrene 4-13DD	6 40E-02 3 60E-02	1 47E-07	7 50E-08	2 22E-07				04E+06			
2: Butanone (MEK) 2: Chloronaphthalene 2: Methylnaphthalene 3: Methylcholanthrene 4: 4: DDD	3 60E-02	6 14E-08	3 13E-08	9 27E-08				6 90E+05			
2. Chloronaphthalene 2. Methylnaphthalene 3. Methylcholanthrene 4. 4. DDD		1 15E-10	\$ 87E-10	7 02E-10				\$ 13E+07			
2.Methylnaphthalene 3.Methylcholanthrene 4.4.DDD	5 00E-01	1 20E-07	6 12E-08	1 81E-07				2 76E+06 **			
3-Methylcholanthrene 4.4. DDD	1 50E+00	9 59E-07	4 89E-07	1 45E-06				1 04E+06 (*)			
4 4 DDD	2 50E-01							A N	¥Z.	¥Z	X X
	4 20E-02				6 9E-11	3 52E-11	1 04E-10		4 03E · 2	4 03E+03	4 03E+04
4 4: DDE	8 50E-03				1 99E-11	1 01E-11	3 00E-11		2 83E+02	2 83E+03	2 83E+04
Acenaphthene	1 80E+01	\$ 75E-07	2 94E-07	8 69E-07				2 07E +07 (*)			
Accomplity	4 30E-02	2.75E.08	1 40E-08	4 15E-08		•	-	1 04E+06 (*)			
Acetone	1 50E-01	2 88E-08	1 47E-08	4 35E-08		******		3 45E+06 (*)			
Acciophenane	1.10E-01	2 11E-08	1 08E-08	3 19E-08		:		3 45E+06 (*)			
dept.	6 70E-03	4 28E-06	2 19E-06	6 47E-06	7 80E-10	3 98E-10	1 18E-09	1 04E+03	5 69E+00	\$ 69E+01	\$ 69E+02
Topic Chindren	1 30E-02	4 16E-06	2 12E-06	6 28E-06	1 16E-10	\$ 91E-11	1 75E-10	2 07E+03	7 42E+01	7 42E +02	7 42E+03
service Chlordane	2 30E-02	7.35E-06	3 75E-06	1.11E-05	2 05E-10	1 04E-10	3 09E-10	2 07E+03	7 44E+01	7 44E+02	7 44E+03
Applyances	4 00E+00	2 S6E-07	1 30E-07	3 86E-07				1 04E+07 (*)			
Antimony	\$ 60E+00	2 68E-05	1 37E-04	1 64E-04				3 42E+04			
Aroclor 1254	3 00E+01	2 88E-02	1 47E-02	4 35E-02	4 11E-07	0 000000105	\$ 16E-07	6 90E+02	5 81E+01	5 81E+02	5 81E+03
Aroclor 1260	6 80E-01		*******		9 32E-09	4 57E-09	1 39E-08	-	4 90E+01	4 90E+02	4 90E+03
3enzene	6 80E-03				1 35E-12	6 89E-13	2 04E-12		3 33E+03	3.33E+04	3 33E+05
Benzidine	2 20E-01	1.41E-06	7 18E-07	2 13E-06		- 6		1 03E+05			
Benzy(a)anthracene	9 10E+00				4 55E-08	2 32E-08	0 8/E-08		1 325 +02	1 32E+03	132E+04
Benzo(a)pyrene	1 10E+01				2 50E-07	2 81E-0/	8 31E-07		1 32E+01	1 32E+02	1 32E+03
Benzo(b)fluoranthene	1 30E+01				6 50E-08	3 32E-08	80-378 6	(0)	1 32E+02	1 32E +03	1 32E+04
Ben ω(g, h, i)perylene	4 50E+00	2 88E-06	1 47E-06	4 35E-06	100	90	00000	035400	1 175 403	107 3LE 1	30.356
Benzyk)fluoranthene	1 20E+01			000 14800	0 00E-09	50-300 c	, corp03	1 385 -08 (*)	50,775	10,776	1 325 +03
Benzoic acid	2 80E-01	1.34E-09	6 85E-10	2.038-09	9 30 30	80.308	7.15E.08	4 27F+05	\$ 57E+01	\$ \$75+02	\$ \$7E.03
Beryllium	1 20E+00	4 60E-07	2.35E-06	90-1167	1 25E-09	6 36F-10	1 895-09	6 89E+05	6.89F+03	6 89E+04	5 37E +03
bis(2-Ethylhexyl)phthalate	1.305.401	1 225-03	2 SOF 08	7 395-08				6 90E+06 (•)			0.76
Butyl benzyl phthalate	3 10E-01	1615.03	8 10F-03	9.80E-03				8 54E+04			
admium	9 30E.03	1 76F-10	9 00E-10	1 08E-09				8 55E+06 (*)			
arbon disulfide	1 OOE 01	1 82F-07	9 30E-08	2 75E-07			ì	6 91E+05			:
hlorobenzene	4 00E-03				3 56E-13	1 82E-14	3 74E-13		1 07E+04	1 07E+05	1 07E+06
Chroming VI	8 40E+00	1.35E-05	3 72E-04	3 86E-04				2 18E+04			
homium	1 80E+03	6 90E-04	3 52E-03	4 21E-03		:		4 28E +05			
Chrysene	1 20E+01			::	6 00E-10	3 06E-10	9 06E-10	.3	1 32E+04	1 32E+05	1 32E +06
Cobalt	4 50E+01	1 44E-06	7 34E-06	8 78E-06				S 13E+06		:	
Di-n-butyl phthalate	3 00E-01	\$ 75E-08	2 94E-08	8 69E-08				3 45E+06			
Di-n-octyl phthalate	6 60E-01	2 66E 06	7.31E-06	9 97E-06	1		1000	0 0 2 E+04	107366	00.300	
Dibenz(a,h)anthracene	1 80E+00		,		9 00E-08	4 29E-08	1 306-0	1.285+04	10.375.1	1326702	1 525+03
Dibenzofuran	1 50E+00	7 19E-06	3 67E-06	1 09E-05	5	90 301 6	4 355 00	1 64F +02	4 835.01	4.835+00	101001
Dieldrin	2 10E-03	3 39E-06	9 31E-06	1.2/15-05	1 100-201	1 175-07	1 COLUMN				10,20,01

FOR CHEMICALS IN SEDIMENTS RISK-BASED CLEANUP LEVELS TABLE 6-1

									The street of the street	רשורווסאבווונ	The state of the s
					Dermal	Ingestion		Noncarcinogenic	Action Level	Action Level(4)	Action Level
	RME"	Dermal	Ingestion	Total	Cancer	Cancer	Total	Action Level	(Risk = 1 x 10-6)	(Risk = 1 x 10-5)	(Risk - 1 x 10-4)
Chemical	(mg/kg)	НО	НО	HQ ^(b)	Risk	Risk	Cancer Risk	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Endosultan II	9 30E-02	2 97E-07	1 52E-07	4 49E-07				2 07E +05			
Ethanol			•								
Ethylbenzene	8 10E-03	1 55E-09	7 93E-10	2 34E-09				3 46E+06			
Fluoranthenc	3 20E+01	1 53E-05	7 83E-06	2 31E-05				1 38E+06 (*)			
Fluorene	1 70E+00	8 15E-07	4 16E-07	1 23E-06				1 38E+06 (*)	-		
Heptachlor epoxide	2 80E-03	4 13E-06	2 11E-06	6 24E-06	1.75E-10	8 90E-11	2 64E-10	4 49E+02	1 06E+01	1 06E+02	1.06E+03
Indenty 1.2.3 ad)pyrene	4 60E+00				2.3E-08	1 17E-08	3 47E-08		1 33E+02	1 33E+03	1 33E+04
Supporting	4 70E-01	1 89E-07	5 21E-07	7 10E-07	1 54E-11	4 24E-11	5 78E-11	6 62E+05	8 13E+03	8 13E+04	8 13E+05
Cand	\$ 28E+02							NA	Y Y	V.	Y Y
Mercuck	3 50E+00	2 24E-05	1 14E-04	1 36E-04				2.57E+04			
Methylene chloride	1 30E-02	4 16E-09	2 12E-09	6 28E-09	6 68E-13	3 41E-13	1 01E-12	2 07E+06 (*)	1 29E+04	1 29E+05	1 29E+06
Nachthalene	2 20E+00	1.41E-06	7 18E-07	2 13E-06				1 03E +06 (*)			
2	2 20E +02	2 11E-05	2 61E-06	2 37E-05				9 28E+06 (*)			
Phenanthrene	1 80E+01	1 15E-05	\$ 87E-06	1 74E-05				1 04E+06 (*)			
Pyrene	1 70E+01	1 09E-05	5 54E-06	1 64E-05				1 03E+06 (*)			
Silver	1 70E+02	6 52E-05	3 33E-04	3 98E-04				4 27E+05			
Styrene	1 70E-02	1 63E-09	8 32E-10	2 46E-09			,	6 90E+06 (*)			
Thallum	1 30E+02	3 12E-03	1 59E-02	1 90E-02			į	6 83E+03			
Tolucia	1 30E-02	1.25E-10	6 36E-10	7 61E-10				1.71E+07 (*)			
Frichioroethene	1 90E-03	6 07E-09	3 10E-09	9 17E-09	143E-14	7 30E-14	8 73E-14	2 07E+05	2 18E+04	2 18E+05	2.18E+06
Vanadium	\$ 60E+01	1 53E-05	7 83E-05	9 36E-05		1	:	\$ 98E+05			
Vioel chlorade	2 80E-03				3 64E-11	1 86E-11	\$ 50E-11		\$ 09E+01	5 09E+02	5 09E+03
X. Internal Control	6 10E-03	\$ 85E-12	2 98E-11	3 57E-11				1 71E+08 (*)			

Note a) RME - Reasonable Maximum Exposure Concentration

b) HQ = Hazard Quotient
c) Cleanup level = (Risk Assessment Conc/HQ) x HI where HI = 1.0
d) Cleanup level = (Risk Assessment Conc/Cancer risk) x Target cancer Risk
d) Cleanup level = (Risk Assessment Conc/Cancer risk) x Target cancer Risk
e) Claculated cleanup level is greater than 100% concentration and 100% concentration is assigned as the cleanup level
NA = Not Applicable These chemicals do not have critical toxicity values, therefore, risk-based cleanup levels could not be calculated.

TABLE 6-2

FOR CHEMICALS IN SURFACE WATER RISK-BASED CLEANUP LEVELS

K bemical	RME(*)	Ingestion	Dermal	Total	Ingestion	Dermal	Total	Noncarcinogenic (c)	Carcinogenic (d)	Carcinogenic (c)	Carcinogenic (d)
	(mg/L)	ÒΗ	ÒΉ	HQ (b)	Cancer Risk	Cancer Risk	Cancer Risk	Clean-up	Clean-up Level	Clean-up Level	Clean-up Level
	•							Level	$(Risk = 1 \times 10^{4})$	$(Risk = 1 \times 10^3)$	$(Risk = 1 \times 10^4)$
								(mg/L)	(mg/L.)	(mg/L.)	(mg/L)
¥	6.10F-03	4 77F-07		4,77E-07				1.28E+04			
Accione	2 50E-04	4 89E-06	9.59E-06	1.45E-05	•			1.73E+01		-	
Ammony Assolar 1353	\$ 00E-04	1 96E-04	1 23E-02	1.25E-02				4.00E-02			
Atomio	3.80F-03	9 92E-05	1.94E-04	2.93E-04	1.59E-08	3.12E-08	4.71E-08	1.30E+01	8.07E-02	8.07E-01	8.07E+00
Alsonic Bilett acht the collochthalate	\$ 70F-03	2.23E-06	1.40E-04	1 42E-04	2.23E-10	1.40E-08	1 42E-08	4.01E+01	4.01E-01	4.01E+00	4.01E+01
ois(z-enrymexympionarae	1 60E-03	6.26E-07		6.26E-07	3 53E-11	:	3.53E-11	2.56E+03	4.53E+01	4.53E+02	4 53E+03
Bromomarhan	7 20E-03	1.67E-04		1.67E-04	-			4.31E+01			
Cadmin	3.30E-03	5.17E-05	1.01E-04	1.53E-04				2.16E+01			
Cobalt	1.80E-03	2.35E-07	4.60E-07	6 95E-07				2.59E+03	:		
Coording	1.10E-03	•			4.00E-11		4.00E-11		2.75E+01	2.75E+02	2.75E+03
Dibromochloromethane	1.80E-03	7 05E-07		7.05E-07	•			2.55E+03	;		
Ethanol	4.10E-02				•			Y :	Y :	NA:	K :
Iodomethane	1.80E-03							YZ (Y Y	Y Y	Y'A
Methylene chloride	1 30E-03	1.70E-07		1.70E-07	2.73E-11		2.73E-11	7.65E+03	4.76E+01	4.76E+02	4.76E+03
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.30E-02	\$.09E-06	9.97E-06	1.51E-05		-		8.63E+02			
Silver	4 70E-04	7.36E-07	1.44E-06	2.18E-06				2.16E+02			
Systems	3.40E-03	1.33E-07		1.33E-07				2.56E+04			
Vanadium	4.90E-03	5.48E-06	1.07E-05	1.62E-05				3.03E+02			

Note a) RME – Reasonable Maximum Exposure concentration
b) HQ = Hazard Quotient
c) Cleanup level – (Risk Assessment Conc/HQ) x HI where HI = 1.0
d) Cleanup level – (Risk Assessment Conc/Cancer risk) x Target Cancer Risk
d) Cleanup level – (Risk Assessment Conc/Cancer risk) x Target Cancer Risk
NA – Not Applicable These chemicals do not have critical toxicity values, therefore, risk-based cleanup levels could not be calculated.

The USEPA guidance for RA provides a systematic means for organizing, analyzing, and presenting information on the nature and magnitude of potential risks to public health posed by chemical exposures. Despite the advanced state of the current methodology, uncertainties and limitations are inherent in the RA process. The uncertainty can lead to an over- or underestimation of the risk. **Table 7-1** presents a qualitative assessment of factors which may contribute to uncertainty in the estimation of potential risks. Available data quality, incomplete information about existing conditions and future circumstances, as well as other factors discussed below contribute to these uncertainties and limitations.

This section discusses the following sources of uncertainties associated with the Soldier Creek RA:

- Data collection and evaluation
- Exposure assessment
- Toxicity assessment
- Risk characterization
- Remedial Action Objectives

7.1 DATA COLLECTION AND EVALUATION

7.1.1 Data Collection

Data used in this RA were collected from East and West Soldier Creeks during two semiannual sampling events as part of the long-term monitoring of Soldier Creek. These data are subject to uncertainty associated with sampling and analysis.

7.1.1.1 **Sampling**

It was assumed in the RA that samples collected were representative of areas where various

However, collected samples may not be completely populations may be exposed.

representative due to biases in sampling, random variability, or sources of non-random

variation, such as the annual precipitation cycle or periodic releases from on-Base or off-Base

outfalls. These sources of bias or variability may result in either an over- or underestimation

of actual chemical concentrations and, subsequently, site risks.

7.1.1.2 **Analysis**

Samples were analyzed and subjected to data quality review procedures to assure that the

data were suitable for use in decision-making. However, it should be understood that sample

analysis is subject to uncertainties associated with precision and accuracy and evaluated

through laboratory quality assurance (QA) programs. Uncertainties associated with precision

and accuracy of analysis are generally random. While these errors are typically of low

magnitude compared to other sources of uncertainty in the RA, they may lead to a possible

over- or underestimation of risk.

7.1.2 Data Evaluation

In accordance with EPA guidance, several inorganic chemicals present at background

concentrations were removed from consideration as potential COCs because they are not

site-related contaminants. This exclusion process was not extended to organic chemicals,

because it is difficult to establish true background levels for most organics. Nonetheless, it is

likely that several of the organic chemicals identified as COCs are present at background

levels, and are not site-related contaminants. Inclusion of these chemicals in the risk

calculations will result in an overestimation of site-related risks.

Q F96526 3MR0S01- DOC jdg md 12.1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring 7.2 **EXPOSURE ASSESSMENT**

The exposure assessment is based on a series of assumptions concerning concentrations of

chemicals to which humans are exposed (exposure point concentrations) and patterns of

behavior leading to exposure or intake of chemicals (exposure scenarios).

7.2.1 Exposure Point Concentrations

In compiling data for use in the RA, arithmetic mean concentrations and 95th percentile UCL

on the mean concentrations were compiled for chemicals detected in each medium. For

RME exposure scenarios, the 95th percentile UCL concentrations were used to estimate risk.

Because UCL concentrations are high end values, typically closer to maximum

concentrations than to the arithmetic mean concentrations, use of UCL concentrations in the

RA will likely result in an overestimation of potential risk.

For the most part, the arithmetic mean and 95th percentile UCL chemical concentrations

found in the four areas of East and West Soldier Creeks evaluated in this RA were used as

exposure point concentrations. It was conservatively assumed that chemical concentrations

observed at the creeks will remain unchanged with time. The potential reduction in chemical

concentrations by remedial action, migration, degradation, or attenuation were not considered

in the current RA. The use of existing chemical concentrations projected into the future may

result in an overestimation of potential health risks.

When calculating exposure point concentrations it was assumed that a chemical not detected

in a given sample was actually present at one-half of its detection limit, if that chemical was

present in any sample from that medium and stream segment. This approach, as described in

the RAGS (USEPA 1989a), is a conservative approach that is likely to lead to an

overestimation of risk, particularly when the quantification limits are high (due to

interferences or sample dilution during analysis) or the only measured concentrations are "J"

coded values less than the detection limits.

The use of statistical methods to calculate exposure point concentrations can result in

calculated concentrations that exceed the maximum measured concentrations, particularly

7 - 3

Q F96526 3MR0S01- DOC jdg md 12 1 97 Tinker AFB - Soldier Creek - Long-Term Monitoring when the sample size is small and the standard deviation of the results is large. Use of a statistical approach to calculate exposure point concentrations when the sample size is small

or standard deviation is large is likely to result in an overestimation of risk.

7.2.2 Exposure Scenarios

The exposure assessment relied on a number of assumptions for potential human exposure.

Assumptions used were based on:

Site-specific information (including information provided in the Baseline Risk

Assessments [B&V 1993 and WCFS 1996e])

RAGS (USEPA 1989a), the Exposure Factors Handbook (USEPA 1989b),

and Dermal Exposure Assessment: Principles and Applications (USEPA

1992a)

Professional judgment

The average case scenarios represent assumptions which are considered central values, or

realistically conservative estimates for the exposed population. However, even the average

case exposure scenario is conservative because it assumes individuals are exposed on a

regular basis over a long period of time and, therefore, likely to overestimate risk. RME

scenarios are developed to provide an upper bound risk estimate. The RME scenarios are

based upon a combination of conservative assumptions for all variables related to exposure

and, therefore, are highly likely to overestimate potential risks.

In some cases (e.g., the dermal permeability constants), published information for one

chemical has been assumed to be representative of other related chemicals.

assumptions may lead to over- or underestimation of risk. The general approach used in this

assessment was to use conservative assumptions for intake variables in the absence of strong

7-4

scientific data, thus minimizing the likelihood that risks are underestimated.

Q F96526 3MR0S01- DOC (dg/md 12 1.97) Tinker AFB - Soldier Creek - Long-Term Monitoring

7.3 TOXICITY ASSESSMENT

7.3.1 Uncertainties Associated with Critical Toxicity Values

In general, the available scientific information is insufficient to provide a thorough understanding of all the potential toxic properties of chemicals to which humans are potentially exposed. Consequently, varying degrees of uncertainty surround the assessment of adverse health effects among exposed populations. Sources of uncertainty related directly to toxicity data include:

- Use of dose-response data from experiments on homogenous, sensitive animal populations to predict effects in heterogeneous human populations with a wide range of sensitivities
- Extrapolation of data from: 1) high dose animal studies to low dose human exposures; 2) acute or subchronic exposure; and 3) one exposure route to another (e.g., from ingestion to inhalation or dermal absorption)
- Use of single-chemical test data that does not account for multiple exposures or synergistic and antagonistic responses
- Critical toxicity values (RfDs or SFs) are predicted values for the most sensitive subpopulations

A high degree of overall uncertainty may be associated with the Critical Toxicity Values used in the RA because there are numerous potential sources of uncertainty associated with the basic toxicology data. In an attempt to minimize the consequences of uncertainty, USEPA guidance typically relies on a conservative approach, applying numerous safety factors to the toxicity data to insure the Critical Toxicity Values used in the RA are protective of all sensitive human populations. Use of these critical toxicity values is highly likely to overestimate potential risk.

7.3.2 Uncertainties Associated with the Use of Surrogates

Some of the detected COCs don't have EPA-established critical toxicity values. Without a

CTV, a chemical cannot be evaluated in the quantitative risk assessment. Consequently,

surrogate compounds in this RA were identified for chemicals without CTVs of their own.

The CTV of the surrogate compound was used to represent potential toxicity of the other

chemical. There is uncertainty associated with this approach because there is insufficient

data to show whether or not the two chemicals have similar toxicities. As a result, this

approach may under- or overestimate risks.

For some chemicals without CTVs of their own, no appropriate surrogates could be

identified. Lead, ethanol, iodomethane, and 3-methylcholanthrene were determined to have

no CTVs of their own and no appropriate surrogates. Therefore, these chemicals could not be

evaluated in the quantitative RA and potential risks may have been underestimated.

7.4 RISK CHARACTERIZATION

Because there are uncertainties in each step of the risk assessment process, uncertainties are

often magnified in the final risk characterization. The final quantitative estimates of risk may

be one or several orders of magnitude different from the potential risk associated with the

given exposure. Because of the conservative approaches used in each step, the overall results

of the RA are more likely to overestimate than underestimate the potential risk associated

with contaminants in Soldier Creek.

7.5 REMEDIAL ACTION OBJECTIVES

Remedial action objectives are developed for the COCs using exposure assumptions

developed in the exposure assessment and critical toxicity values identified in the toxicity

assessment. All of the uncertainties associated with selection of COCs, development of

exposure assumptions, and use of USEPA-derived toxicity values also apply to the

calculation of remedial action objectives. Because of the inherent conservatism within the

risk assessment process, the resulting remedial action objectives are likely to be overly

7-6

conservative.

O. F96526 3MR0S01- DOC .jdg md. 12:1.97 Tinkc. AFB - Soldier Creek - Long-Term Monitoring

TABLE 7-1

SUMMARY OF UNCERTAINTIES ASSOCIATED WITH RISK ASSESSMENT FOR SOLDIER CREEK

Assumptions	Estimated Magnitude of Effect on Risk	Direction of Effect on Risk Estimate
Data Collection and Evaluation		
Samples collected were representative of conditions to which various populations may be exposed.	Low - Moderate	May over- or underestimate risk.
Errors in chemical analysis	Low	May over- or underestimate risk.
High detection limit	Low-Moderate	May over- or underestimate risk.
For RME exposure scenarios, the 95th percentile UCL concentrations were used to estimate risk.	Low - Moderate	Likely result in an overestimate of risk.
Inclusion of background level organic compounds in the risk calculation.	Low - Moderate	May overestimate site-related risks.
Exposure Assessment		
Use of existing chemical concentrations projected into the future	Low - Moderate	May overestimate site-related risks.
Chemical concentrations reported as "below method detection limit" are used at one-half detection limit when calculating mean chemical concentration	Low - Moderate	May over- or underestimate risk, but usually overestimate risk.
Use combination of conservative assumptions to estimate RME associated risks.	Moderate	May over- or underestimate risk.
Toxicity Assessment		
The use of conservative USEPA models for developing Slope Factors (SF)	Moderate - High	May overestimate risk.
The Reference Dose (RfD) for a compound is an estimate of the threshold concentration for the most sensitive human population associated with the lowest observed adverse effect for that compound	Moderate - High	May overestimate risk.
For some chemicals without a critical toxicity value of their own, a surrogate compound was identified and its critical toxicity value was used to evaluate the chemical in the quantitative risk assessment.	Moderate	May over- or underestimate risk.
Critical toxicity values weren't available for some identified COCs. Appropriate surrogates could not be identified for some chemicals without critical toxicity values. Therefore, these chemicals couldn't be evaluated in the quantitative risk assessment.	Low - Moderate	May underestimate risk.
Hazard indices (HIs) were developed assuming all toxic effects were additive	Low - Moderate	May overestimate risk.
Risk Characterization		
Conservative approaches used in each step	Moderate - High	May overestimate risk.
Remedial Action Objectives		
All the uncertainties associated with COC selection, exposure assumption development, and EPA-derived toxicity values are used.	Moderate - High	Likely to be overly conservative.

8.0

TRENDS

Two RAs of East and West Soldier Creeks were previously completed by WCFS in 1996 and

1997 (WCFS 1996e, 1997b). The results of the first and second year risk assessments

indicated that there were no unacceptable human health risks associated with the contaminant

concentrations detected in sediments and surface water along these Soldier Creek tributaries.

Contaminants and their concentrations are continuously changing along the length of Soldier

Creek and its tributaries. Because of the dynamics of the Soldier Creek system, the results of

the first and second year RAs were compared to the results of this current risk assessment to

evaluate any trends which may be occurring.

Tables 8-1 and 8-2 show the comparison of first year, second year, and third year

noncarcinogenic health hazards and carcinogenic risks from surface water and sediments for

on-Base workers under the current and future use scenarios, respectively.

Table 8-3 shows the comparison of first year, second year, and third year off-Base resident

noncarcinogenic health hazards and carcinogenic risks from exposure to surface water and

sediments under current and future use scenarios.

Individual COC contributions to the HIs and cancer risks of the third year RA are presented

in Attachment A.

8.1 AREA 1: ON-BASE WEST SOLDIER CREEK

In general, there are no significant changes in the potential hazard indices and cancer risks

(i.e., all three reports show HIs below 1.0 and cancer risks within or below the target risk

range of 1×10^{-6} to 1×10^{-4}). The estimated cancer risks for the third year RA were slightly

lower than the first or second year RAs. The HIs have fluctuated over the three years, but

remain at the same general level. These changes are likely due to the differences in the

COCs and their concentrations between the three years.

Q F96526 3MR0S01- DOC rdg md 32 1 97 ink r AFB - Soldier Creek - Long-Tern Monitoring

Third Annual Report

8-1

Sediments

More pesticides and phthalates were detected in the first year and third year monitoring than

in the second year. Data from the second and third years showed more chlorinated benzenes

detected than in the first year. For COCs detected all three years, concentrations fluctuated

from the first to the third year. In general, the second year had the highest concentrations of

the three RAs. The metals detected from one year to the next were similar; however, the

concentrations for some of these metals were significantly lower (by a factor of 2 or more) in

the third year compared to the second year.

For the current Base worker exposure scenario, the HI for noncarcinogenic health effects

appears to be slightly lower in the third year RA compared to the first and second year RAs.

Third-year cancer risks appear to be slightly lower than those estimated in the first and

second year RAs. The dermal and ingestion exposure routes contribute equally to the cancer

risks and noncarcinogenic health effects for all three RAs (see Table 8-1). Benzidine was the

largest contributor to the cancer risk for the first and second years. Aroclor 1254 was the

largest contributor to the HIs for the first and second years. Benzo(a)pyrene was the largest

contributor to the cancer risk for the third year RA. Thallium was the major contributor to

the noncarcinogenic health effects for the third year RA.

For the future Base worker exposure scenario, both the second year HIs and cancer risks

appear to be slightly higher than were previously estimated in the first year RA. The third

year RA had estimated HIs and cancer risks slightly lower than the second year RA and

similar to the first year RA. These small variations in estimated risks between the two RAs

are likely due to the changes in the detected COCs and their concentrations. The dermal and

ingestion exposure routes appear to contribute evenly in the three RAs (see Table 8-2).

Benzidine was the major contributor to the cancer risks all three years. Aroclor 1254 was the

major contributor to the HIs all three years.

Surface Water

As with sediments, the COCs varied between the RAs. The chemical groups which varied

the most were volatiles and semivolatiles. More volatiles were detected in the second year

Q=F96526 3MR9801- DOC_jdg ind=12.1.97 Fink it AFB - Soldier Creek - Long-Terit Monitoring RA than in the first and third year RAs. The semivolatiles detected for the third year RA

were different from those in the second year RA.

In general, both current and future estimated HI and cancer risks from surface water along the

on-Base portion of Soldier Creek are lower for the second year RA than those estimated in

the first and third year reports. Dermal contact with surface water was the primary exposure

pathway for all three RAs. Metals were the major contributors to the HI for all three RAs.

Arsenic was the primary contributor to the cancer risk in the third year RA. No carcinogenic

chemicals were detected in surface water along this creek segment during the second year of

monitoring.

8.2 AREA 2: OFF-BASE WEST SOLDIER CREEK

The off-Base residential HIs for this segment of Soldier Creek were approximately one order

of magnitude higher in the second and third year RAs than in the first year RA (Table 8-3).

Potential estimated off-Base residential cancer risks were higher for the third year RA than

the first and second year RAs (Table 8-3). Again, the dynamics of the creek system resulted

in different COC lists and concentrations between the two years.

Sediments

Overall, more chemicals were considered as COCs in the first and third years than in the

second year. More pesticides were detected in the first year than in the second and third

·

years, and polycyclic aromatic hydrocarbons (PAH) concentrations were markedly higher in

the third year than in the second year. The current and future off-Base residential exposure

scenarios for the second year RA indicated slightly higher estimated HIs and slightly lower

cancer risks in the second year than were estimated in the first year RA. The third year HIs

are similar to the second year HIs. Cancer risks for the third year are higher than the first two

years.

The cancer risks and noncarcinogenic health effects for all three RAs were primarily driven

by ingestion of sediments. Aroclor 1254 was the major contributor to the HIs for all three

8-3

Q. F96526 3MR0S01- DOC jdg md. 12 1 97 Tinker AFB - Soldier Creek - Long-Term Monitoring RAs. Benzidine was the major carcinogenic contributor for the second year RA. PAHs were

the major contributor to cancer risks in the first and third year RAs.

Surface Water

More metals were considered as COCs in the second and third year RAs than in the first year

RA. Fewer volatiles were considered as COCs in the second year RA than in the first and

third year RAs.

A comparison of potential risks for Area 2 surface water indicated that both the HIs and

cancer risks were lower in the second year RA than were estimated in the first year RA. The

third year HIs and cancer risks from surface water are in general lower than the first year and

slightly higher than the second year. Although the COCs varied, the COCs detected in the

third year do not appear to have resulted in risks significantly higher than those compounds

considered COCs in the first and second year RAs.

Dermal contact was the primary pathway of concern for surface water exposures. Metals

were the major contributors to the HIs for all three RAs. Metals and bromomethane were the

major contributors to the third year RA HIs. Arsenic was the major contributor to cancer

risks in the first RA. No carcinogenic compounds were detected; therefore, there were no

cancer risks from surface water for the second year RA along this creek segment.

Chloromethane was the major contributor to the third year RA cancer risks.

8.3 AREA 3: ON-BASE EAST SOLDIER CREEK

In general, there are no significant changes in the potential HIs and cancer risks between the

three RAs. The HIs have risen slightly from the first year. The estimated cancer risks have

decreased from the first year to the third year. These changes are likely due to the differences

in detected COCs and their concentrations.

Q F96526.3MR0S01-DOC_jdg.md_12.1.97. Tinker AFB - Soldier Creek - Long-Term Monitoring

8-4

Sediments

Fewer chemicals were considered COCs in the second year than in the first year RA. More

pesticides and metals were detected in the second and third years. Several SVOCs and aldrin

were detected at significantly higher concentrations in the second year than in the first year.

However, pesticides and SVOC concentrations (especially PAHs) were lower in the third

year than in the second year.

For the current Base worker exposure scenarios, estimated HIs were slightly higher in the

third year than in the second year. Cancer risks were slightly lower in the third year RA than

in the second year RA. The cancer risks and noncarcinogenic health effects for the third year

RA were primarily driven by ingestion (see Table 8-1). Second year RA cancer risks and

noncarcinogenic health effects for the second year were driven by dermal exposure. The first

vear RA noncarcinogenic health effects and cancer risks were driven by ingestion of

sediments. Aroclor 1254 was the major contributor to the HI for the first and second year

RAs. Thallium and Aroclor 1254 were the major contributors to HI for the third year RA.

Benzidine and PAHs were the major contributors to the cancer risks for the first and second

year RAs. PAHs and Aroclor 1254 were the major contributors to the cancer risks for the

third year RA.

For the future Base worker exposure scenarios, third year estimated HIs were slightly higher

and cancer risks were mostly lower than indicated in the first and second year RAs (see

Table 8-2). The noncarcinogenic health effects for the second and third year RAs were

primarily driven by ingestion of thallium and Aroclor 1254 in sediments. The cancer risks

were primarily driven by dermal contact with Aroclor 1254 and PAHs.

The cancer risks and noncarcinogenic health effects for the first year RA were primarily

driven by dermal contact. Aroclor 1254, and benzidine and PAHs were the major

8-5

contributors to the HI and cancer risks, respectively.

Q: F96526-3MR0801-DOC jdg.md-12.1.97 Tinker AFB - Soldier Creek - Long-Term Monitoring **Surface Water**

Bis(2-ethylhexyl) phthalate was the only SVOC considered to be a COC in surface water for

the third year RA. More metals and SVOCs were considered COCs in the second year than

in the first year. No pesticides were considered COCs in the 2nd year RA; however,

pesticides were included in the first and third year RAs. Aroclor 1254 was the only pesticide

considered to be a COC for the third year RA. Several different volatiles were considered

COCs in the second year RA than in the first year RA, and concentrations of recurring

volatile COCs were approximately two (2) times higher in the second year than those

detected for the first year RA. In general, concentrations of volatile COCs for the third year

RA were similar or slightly lower than the second year RA concentrations.

For the Base worker exposure scenarios, estimated potential cancer risks were slightly higher

in the second year RA than those for the first and third year RAs, and HIs were slightly lower

in the second year RA. Cancer risks were slightly higher in the second year than the first and

third year RAs, and HIs were higher in the first and third year RAs.

The cancer risks and noncarcinogenic health effects were primarily driven by dermal contact

in all three RAs. Metals were the major contributors to the HIs for the first and second year

RAs. Aroclor 1254 is the major contributor to the HI for the third year RA. Aroclor 1254

was also the major contributor to the cancer risks for the third year RA. Benzidine was the

major carcinogenic contributor in the second year RA. Aldrin was the major contributor to

the cancer risks in the first year RA.

8.4 AREA 4: OFF-BASE EAST SOLDIER CREEK

Overall, the off-Base residential cancer risks for this segment of Soldier Creek were lower in

the third year RA than in the first and second year RAs (see Table 8-3). HIs were higher in

the third year RA than in the second year RA. Creek dynamics, again, influenced the HIs and

8-6

cancer risks by changing the COCs and detected concentrations.

Q. F96.526 3MR0801- DOC (dg ind. 12.1.97) Tinker, 4FB - Soldier Creek - Long-Term Monitoring **Sediments**

Fewer SVOCs were considered COCs in the third year RA than in the first and second year

RAs, especially fewer PAHs (both carcinogenic and noncarcinogenic). Additionally, the

detected concentrations of PAHs in the third year were significantly lower than in the first

and second year RAs.

For current and future off-Base residential exposure scenarios, the estimated cancer risks

were lower in the third year than those estimated in the first and second year RAs (see Table

8-3). HIs were slightly higher than the first and second year RAs.

Third year RA cancer risks and noncarcinogenic health effects were primarily driven by

ingestion of sediments. Thallium and cadmium were the major contributors to the HI for the

third year RA. Aroclor 1254 and cadmium were the major contributors to the HI for the first

and second year RAs. Beryllium was the major contributor to the carcinogenic risks for the

third year RA. Beryllium and benzo(a)pyrene were the major carcinogenic contributors for

the second year RA. Pesticides were a major contributor to cancer risks in the first year RA.

Surface Water

Bis(2-ethylhexyl) phthalate was the only SVOC considered to be a COC for the third year

RA. No pesticides/PCBs were considered to be COCs for this RA. The detected pesticides

and semivolatile organics considered to be COCs in the second year RA were significantly

different than those identified as COCs in the first year RA. Additionally, the concentrations

of COCs in the second and third year RAs were lower than in the first year RA.

Estimated HIs and cancer risks were slightly lower for dermal exposures to surface water

than those indicated in the first and second year RAs. Ingestion HIs and cancer risks were

higher in the third year RA.

Ingestion of surface water was the primary driver for cancer risks and noncarcinogenic health

effects in the first and third year RAs. The cancer risks and noncarcinogenic health effects

were primarily driven by dermal contact in the second year RA. Metals were the major

Q=F96526 3MR0S01- DOC jdg.md=12:1-97 Tinker AFB - Soldier Creek - Long-Term Monitoring contributors to the HI, and arsenic was the major carcinogenic risk contributor for the first and third year RAs. 4,4-DDT and 2,6-dichlorophenol were the major contributors to the second year HIs. 4,4-DDT was also the major carcinogenic contributor in the second year RA.

TABLE 8-1
COMPARISON OF FIRST THREE YEARS
NONCARCINGGENIC HEALTH HAZARDS AND CARCINGGENIC RISKS ASSOCIATED WITH
SCHEACE WATER AND SEDIMENTS IN SOLDIER CREEK
(CTRRENT BASE WORKER SCENARIO)

HAZARD CANCER HAZARD C		0	ON-BASE WOR	WORKER (3rd Year)	(ON	-BASE WORI	ON-BASE WORKER (2nd Year)		О	N-BASE WOF	ON-BASE WORKER (1st Year)	
HAZARD CANCER HAZARD C		AVE	AGE	RM	3	AVER	4GE	RM		AVERAGE	AGE	RMF	1
NDEX NISK INDEX RISK INDEX RISK INDEX RISK		HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER
TOTAL COUNTY ZE-10 COUNTY ZE-08 COUNTY COUNTY ZE-07 ZE-07 COUNTY ZE-07 ZE-07 ZE-07 COUNTY ZE-07	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISE	
TOTAL COMMON 2E-10 COMMON 1E-12 COMMON 1E-10 COMMON 1E-1	IN BASE WEST SOLDIER CREEK (AREA 1)												
TOTAL DOUGO 2E-10 DOUGO 4E-08 DOGGO DE-00 DOUGO DOUG	SURFACE WATER INGESTION	0 00001	2E-10	0.0002	3E-08	0 0000002	1E-12	0.0001	2E-10	0 00001	SE-10	0 00003	A. 0.8
TOTAL O 0001 4E-10 O 002 2E-07 O 0004 3E-09 O 04 O 05	SURFACE WATER DERMAL EXPOSURE	10000 0	2E-10	0.0004	4F-08	0 0000001	0E+00	0.0001	0E+00	0.000004	1E-09	0 0000	(n) 4F
OTHER OTHE	SEDIMENTINGESTION	0.001	4E-10	0.02	2E-07	0 0004	3E-09	0.04	3E-07	0.0001	3E-08	10.0	5 4
TOTAL DODI 9E-10 DODI DE-09 DODI DE-09 DODI DE-09 DODI DE-09 DODI DE-09 DODI DE-09 DODI	SEDIMENTS DERMAI EXPOSURE	0.0000 0	1E-10	0.008	4E-07	1000 0	1E-09	0 00	7E-07	0.00002	1E-08	0.05	9F-00
NA	TOTAL	100 0	9E-10	0.03	7E-07	0 000\$	4E-09	0.1	1E-06	0 0001	4E-08	000	11-03
NA	DEF BASE WEST SOLDIER CREEK (AREA 2)						-						
NA	SURFACE WATER INGESTION	۲Z	ΥZ	ź	ď.	۲Z	r Z	4 N	e Z	Y.Z.	ď.	ď.	2
	SURFACE WATER DERMAL EXPOSURE	4 Z	۲ Z	4 Z	ĸZ	Ϋ́Z	ج Z	٠ 2	K Z	Y.Y	ď.	. z	
	SEDIMENT INGESTION	4 Z	ď. Z	K Z	Y.Z.	ĸZ	۲ Z	4Z	K Z	4.Z	4.Z	, Z	2
101A1	SEDIMENTS DERMAL EXPOSURE	۲ 2	ď Ž	ď Z	e Z	۲ Z	K Z	r. Z	e Z	Y.X	ď.Z	' 7 ' Z	. 2
10 ctour 1E-10 0 ctour 1E-08 0 ctour 1E-09 0 ctour 1E-00 0 ctour	10141	e Z	Y.Z.	~ Z	ΥZ	4Z	۴N	NA	۲ Z	NA	Ϋ́N	r Z	7
O COUNTY C COUNTY	IN-BASE EAST SOLDIER CREEK (AREA 3)												
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE WATER INGESTION	0.00000	- IE-10	0.0003	(E-08	0.000003	8E-09	0.0001	8£.07	0.00002	1E-10	100.0	***
COUNTY The COU	SURFACE WATER DERMAL EXPOSURE	0.0003	SE-10	100	2E 07	0.00001	8E-09	0.0004	2E-00	0.00002	2E-10	0.602	20-17
10141 0 0 0 0 0 0 1 1 1 1 1 1	SEDIMENT INCESTION	\$000.0	1F-09	600	\$E-07	0.0004	4F:08	0.05	7E-07	0.0002	1E-07	0.00	SF 63
1014 0.0008 2F.09 0.05 2F.09 0.0005 2F.08 0.04 5F.06 0.0008 2F.09 0.04 5F.06 0.05 2F.08 0.04 5F.06 0.05 2F.06 0.05	SEDIMENTS DERMAL EXPOSURE	0.00003	01:34	100	9E-07	0000	1F-03	7 00	1E-00	0.0001	4F 08	13.0	10.40
4 4 4 X X X X X X X X X X X X X X X X X	101AL	0.0008	2E-09	0.05	2E-06	0.0005	2E-08	0.04	4F-06	0.0002	1F 07	0.03	1 47
4 4 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X X 4 7 X	HE BASE EAST SOLDIER CREEK (AREA4)				-								
4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SURFACE WATER INGESTION	Ŧ.Z.	۲ Z	4.2	r Z	K Z	٠ ٧	4 Z	ĸ Z	ď. Z	e Z	r Z	Ē
4	SURFACE WATER DERMAL EXPOSURE	r Z	۲Z	r Z	۲ Z	K.N.	イズ	۲ Z	r Z	۴X	4 Z	r Z	Ž
4Z 4Z 4Z	SEDIMENT INGESTION	ď. Z	r.Z	~ 2.	e Z	K Z	e Z	イス	K Z	۴Z	4 Z	7. Z.	Y.
	SEDIMENTS DERMAL EXPOSURE	T Z	Ϋ́Z	۲ 2	۲ Z	K Z	۲ Z	K.Z.	r Z	4. Z	K.Z.	r Z	ź
	TOTAL	ĸZ	۲ Z	K.Z	۲ Z	ĸN	47	ď Z	ĸ Z	N.A	r.Z	ď Z	7 2

TABLE 8-2
COMPARISON OF FIRST THREE YEARS
NONCARCINOGENIC HEALTH HAZARDS AND CARCINOGENIC RISKS ASSOCIATED WITH
SURFACE WATER AND SEDIMENTS IN SOLDIER CREEK
(FUTURE BASE WORKER SCENARIO)

						THE RESIDENCE OF THE PARTY OF T							
		Ĉ	ON-BASE WOR	SE WORKER (3rd Year)	2	Ċ	N-BASE WOR	ON-BASE WORKER (2nd Year)	<u>.</u>	0	N-BASE WOR	ON-BASE WORKER (1st Year)	_
		AVERAGE	AGE	RME	31	AVERAGE	AGE	RME	IE	AVERAGE	AGE	RME	-
	1	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER
		INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK
ON BACK WEST SOUDIER (REFERENCED)													
NOTIVE NEW TOTAL		0.0000	2E-10	0000	2E-08	0 0000002	1E-12	1000 0	2E-10	0 00001	5E-10	0.0002	6E-08
SCREAGE WATER DOORS FOR		0.00001	2E-10	0.0004	4E.08	0.000001	0E+00	0 00001	0F+00	0.000004	1E-08	0.0003	(O 4F
SCREAGE WATER DESCRIPTION		0.001	2E-09	0.03	6E-07	0 0004	5E-09	0.03	6E-07	10000	3E:09	0.01	415.013
SEDEMENT DEBMAT EXPOSURE		0000	7E-19	0.03	9E-07	0.0001	2E-09	900	1E-06	0.00002	F-04	55.22	% F.0.7
	TOTAL	0.001	3F-09	0.03	1E-06	0.000\$	7E-09	0.07	2E-06	0.0001	6E-04	100	24-06
ARE BUCK MAN COLDING CREEK (AREA 2)			The state of the s										
OFF-BASE WEST SOLDIER CREEK (MEER 5)		e Z	ĸ.Z.	۲ Z	ĸZ	ΥN	ď.	Y.Z.	Ϋ́Z	۲Z	Y.Z	۲ 2	۲ Z
SHENOWAL ENDING THE WORLD TO THE		4 Z	4 Z	K Z	イン	Y.Z	ĸ	KZ.	K.Z.	٠ ٧	K.Z.	ť Z	۲ 2
SURFACE WATER DENOMINE ENTRY OF THE		ď.	٠ 2	4.Z	ΨZ.	ĸ Z	r Z	Y.Z.	۲ Z	47	۲X	ď. Z	4 Z
CEDIMENT NOESTION		K Z	K Z	۲ Z	۲ Z	N.A	K.N.	۲ Z	K Z	ĸZ	Ϋ́N	ź	ź
	10141.	K Z	ď Z	4.Z	e Z	NA	ď.	Y.Y	Y.Y	۲N	Y'A	Ϋ́Z	7 2
ON BASE FANT SOI DIER CREEK (AREA 3)													
NOLINE DE LA		0.00002	1E-10	0.0003	80-31	0 000003	8E-09	0 0001	8E-07	0 00000	1E-10	0.001	2E-08
SECTION OF THE PROPERTY OF THE		0.000	5E-10	0.01	2E-07	0 00001	8E-05	0 0004	2E-00	0 00000	2E-10	0.002	24.69
SURFACE WATER DENGINEER STATES		1000	8E-10	0.02	3E-07	0 0004	4E:09	100	6E-07	1000 0	8E-08	0.01	1F 05
SEDINIENT INCESTION CONTROL		0.00004	35:10	100	SE-07	0 00004	2E-09	600 0	1E 00	0.00004	3E-08	1070	3F 95
	TOTAL	0.001	2E-09	0.05	1E-06	0 0000	2E-08	0.02	4F-06	0.0002	1E-07	0.02	3F-05
OFF-BASE FAST SOLDIER CREEK (AREA 4)				7	4 2	4 Z	7 2	ď.	e Z	¥ Z	Z	۲ 2	1 /
SURFACE WATER INGESTION		2 2	(a	: 4 : 2	۲ Z	Z.	r.Z	K Z	r Z	r.Z	7.	r Z	7 Z
SURFACE WATER DERMAI ENPOSURE	_	C.		: :			2	V 1X	42	7	· N	2	-
AFDIMENT INCESTION		イス	۲ Z	e Z	۲. ۲.	۲ ۲	2	۲ :	£ :	ć :	<u>ر</u>	۲.	r c
CEDIMENTS DEBMAI EXPOSURE		4.Z	K Z	4.Z	イス	K Z	٠, Z	ď.	K Z	ďΖ	Ϋ́Z	イン	٠ ٢
	10 TAL	K Z	ď.	KZ.	ď Z	۲N	NA	A'N	K.N.	K.N.	NA	Y.Y	N.A.

TABLE 8-3
COMPARISON OF FIRST THREE YEARS
NONCARCINGGENIC HEALTH HAZARDS AND CARCINGGENIC RISKS ASSOCIATED WITH
STREACE WATER AND SEDIMENTS IN SOLDIER CREEK
(CHRRENT AND FITH RE OFF-BASE RESIDENTIAL SCENARIO)

	30	F-BASE RESI	OFF-BASE RESIDENT (3rd Year)	r)	OF	OFF-BASE RESI	OFF-BASE RESIDENT 2nd Year)	ır)	10	F-BASE RESI	OFF-BASE RESIDENT (1st Year)	
	AVERAGE	AGE	RME	E	AVERAGE	LAGE	RME	IE	AVERAGE	AGE	RME	
	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER	HAZARD	CANCER
	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISK	INDEX	RISE
ON-BASE WEST SOLDIER (REEK (AREA 1)												
SURFACE WATER INGESTION	e Z	۲ Z	e Z	ĸ Z	r. Z	۲ Z	K.Z.	۲X	A.Z.	ď. Z	4 Z	4 Z
SUBFACE WATER DERMAL EMPOSURE	۲ Z	K Z	ĸ.Z.	۲Z	ΥZ	KN	NA	Ϋ́Z	4 Z	r Z	イス	et Z
SEDIMENT INGESTION	e Z	K Z	ΚZ	۲Z	ΥZ	K Z	ĸZ	Ϋ́Z	Y.Y	Y.Z.	ź	4. Z
SEDIMENTS DERMAT ENPOSURE	K Z	r Z	ĸZ	Ϋ́Z	ĸ Z	۲ 2	K	Ϋ́Z	K Z	ď.	۲ 2.	Z Z
TOTAL	∢ Z	r Z	Ϋ́Z	Y.Z.	۴N	ĸ.	Y.	¥.Z	NA	r.N	۲ 2	त 2
OFF BASE WEST SOLDIER ("REEK (AREA 2)												
SUBFACE WATER INGESTION	0 0001	1E-10	0.0003	8E-10	0.00001	0F+00	0.0003	oF +00	0.0001	\$E-03	0.000	80 4r
SUBFACE WATER DERMAL ENPOSURE	0.0001	UE+00	0.0007	0E+00	0.00002	0F+00	0.0002	0F+00	0.0001	3E-09	100.0	5E-08
SEDIMENT INCESTION	0.02	6E-07	1.0	9E-06	0.05	3E-07	0.1	1E-06	0.01	2E-07	0.03	2F U6
SEDIMENTS DERMAL ENPOSURE	00.0	2F-08	700	3E-06	000	1E-08	ឹក	4E-07	0.000.2	9E-09	100	(el-10)
IOTAL	0.02	6E-07	0.1	1E-05	0.02	3E-07	0.1	2E-06	100	2E-07	0.03	2F-06
ON-BASE EAST SOLDIER ('REEK (AREA 3)												
STREACE WATER INGESTION	モス	K Z	Y.Z	ď.	e Z	K Z	K Z	e Z	e Z	۲ 2	۲ 2.	ч Z.
SURFACE WATER DERMAL ENPOSURE	ĸZ	۲ 2	r.Z	r. Z	4 Z	ゼス	۲ Z	ベス	ĸ.	e Z	K Z	4 Z
SEDIMENTINGESTION	e Z	ť.Z	r.Z	Y.Y.	Ϋ́Х	K.N.	ĸZ	A.Z.	K Z	ΥZ	ď.	K Z
SEDIMENTS DERMAL ENPOSURE	r Z	ď Z	ď. Z	Y.Y	Ϋ́Х	K X	モス	٠ ٧	ď. Z	ď.	۲ 2	4 Z
TOTAL	A.X.	۲. Z	r Z	N.A	N.A	イン	N.A	F.Z.	ď.	r Z	A.N.	42
OF F-BASE EAST SOLDIER ('REEK (AREA 4)	provide an	94. 3	1000	AE 0.7	0 Otto	3F.10	0.000	307	6,000	3	14.04	-
SURFACE WATER INGESTION	1000	90-36	100	0.70	10000		1000	5 1	•	00.1	10.0	· •
SURFACE WATER DERMAL EXPOSURE	0.0005	3E-08	0.001	1E-07	0.007	80-34 4E-08	0000	2E-07	1000	2F-08	500 O	[()
VEDIATENT INCESTION	1.0	4F-08	7 ()	3E-07	00.00	1E-07	100	7E-07	100	3E-07	1.0	1F-06
SEDIMENTS DERMAL ENPOSURE	9.001	ा क	10.0	1E-08	0 0001	80-31 11-08	1000	75-07	0.0001	4E-08	(00)	3F 06
TOLAT	10	1E-07	70	1E-06	900.0	2E-07	0.02	1E-00	100	4E-07	0.2	5F-06

This RA has evaluated potential health hazards (i.e., noncarcinogenic effects) and cancer risks associated with exposure to surface water and sediment from portions of East and West Soldier Creek that may have been impacted by contaminant releases from Tinker AFB. Based on difference in contaminant sources and exposed populations, the following four different stream segments were evaluated quantitatively in this RA:

- West Soldier Creek, on-Base
- West Soldier Creek, off-Base
- East Soldier Creek, on-Base
- East Soldier Creek, off-Base

Chemicals of concern were identified based on the evaluation of chemical data from surface water and sediment samples collected by WCFS in the two semiannual sampling events of 1997. An evaluation of potential health risks has been performed for a group of exposure scenarios believed to represent potential forms of human activities that could occur at these areas. These exposure scenarios include the following:

- Construction workers involved in repair or installation of underground pipelines around or under on-Base portion of the creeks
- Residents wading or swimming in the off-Base portion of West and East Soldier Creeks

Swimming was only evaluated for the child scenario for East Soldier Creek; all other scenarios assume wading only. Potential health risks associated with surface water and sediment exposure were evaluated for both on-site construction workers and off-site residents. The results of the risk characterization indicate that potential cancer risks and noncarcinogenic health hazards for all scenarios are within or below the advisory range of 10^{-6} to 10^{-4} and 1.0, respectively. These results indicate that exposure to surface water and

sediments in West and East Soldier Creeks is not likely to result in an unacceptable cancer

risk or noncarcinogenic hazard for any on-Base or off-Base populations under current or

future stream use conditions.

As part of the RA, a set of cleanup goals was developed to identify health-protective levels

for each COC. Although remediation does not appear to be warranted at the present time

(based on risk to human health), these cleanup goals provide a set of "action criteria," should

remedial action be required in the future.

A trend analysis was also done as part of this RA. The results of the comparison between

this RA and the two previous RAs showed no dramatic changes. However, Area 4 cancer

risks appear to be decreasing from the first year to the third year RA. The other three areas

evaluated don't show any clear trends.

O F96526 3MR0S01- DOC jdg md 12.1.97 Finker AFB - Soldier Creek - Long-Term Monitoring Third Annual Report

- Black and Veatch Waste Science Technology (B&V). 1993. Final Remedial Investigation Report, Tinker AFB Soldier Creek RI/FS. April.
- Environmental Criteria Assessment Office (ECAO). 1993.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Company. New York.
- National Research Council (NRC). 1989. Recommended Dietary Allowances, Food and Nutrition Board, National Academy of Sciences.
- Nelson, W.E. 1992. Nelson Textbook of Pediatrics. 14th edition. W.B. Saunders Co., Philadelphia, PA.
- NUS Corporation (NUS). 1989. Final Storm Sewer Investigation for Soldier Creek. Report for Tinker Air Force Base, Oklahoma City, OK. October.
- Parson Engineering Science (PES). 1996. Tinker AFB Soldier Creek/Off-Base Groundwater Operable Unit Remedial Investigation: Final. March.
- Radian Corporation (Radian). 1985. Installation Restoration Program, Phase II Confirmation/ Quantification, State 1, Final Report. September.
- U.S. Department of Labor. 1987. Distribution of workers by years of tenure with current employer. Bulletin dated Thursday, October 22, 1987. Document USDL 87-452.
- U.S. Environmental Protection Agency (USEPA). 1988. Federal Facilities Agreement Under CERCLA Section 120. In the Matter of: U.S. Environmental Protection Agency and Tinker Air Force Base, Oklahoma. Administrative Docket Number: NPL-U3-2-27. December 9.

- U.S. Environmental Protection Agency (USEPA). 1989a. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual, Part A. Interim Final (RAGS). EPA/540/1-89/002.
- U.S. Environmental Protection Agency (USEPA). 1989b. Exposure Factors Handbook. May.
- U.S. Environmental Protection Agency (USEPA). 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Code of Federal Regulations, Chapter 40, Part 300.
- U.S. Environmental Protection Agency (USEPA). 1991a. Standard Default Exposure Factors. OSWER Directive 9285.6-03. March
- U.S. Environmental Protection Agency (USEPA). 1991b. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation, Part B, Development of Risk-based Preliminary Remediation Goals. EPA/540/R-92/003. December.
- U.S. Environmental Protection Agency (USEPA). 1991c. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive 9355.0-30. April 22.
- U.S. Environmental Protection Agency (USEPA). 1991d. Supplemental Region IV Risk Assessment Guidance. March 26.
- U.S. Environmental Protection Agency (USEPA). 1992a. Dermal Exposure Assessment: Principles and Applications. EPA/600/8-91/011B. January.
- U.S. Environmental Protection Agency (USEPA). 1992b. Supplemental Region IV Risk Assessment Guidance. February 11.
- U.S. Environmental Protection Agency (USEPA). 1992c. Supplemental Guidance to RAGS: Calculating the Concentration Term. OSWER Directive 9285.7-080. May.

- U.S. Environmental Protection Agency (USEPA). 1994. Health Effects Assessment Summary Tables, FY-1994.
- U.S. Environmental Protection Agency (USEPA). 1997a. Integrated Risk Information System (IRIS) on-line database.
- U.S. Environmental Protection Agency (USEPA). 1997b. Region III Risk-based Concentration Table.
- Woodward-Clyde Federal Services (WCFS). 1994. Final Work Plans for Long-Term Monitoring and Ecological Assessment of Soldier Creek Tinker Air Force Base. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. June.
- Woodward-Clyde Federal Services (WCFS). 1996. Draft Human Health Risk Assessment Report. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. January.
- Woodward-Clyde Federal Services (WCFS). 1997a. Draft Ecological Assessment Report. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. November.
- Woodward-Clyde Federal Services (WCFS). 1997b. Draft Human Health Risk Assessment Report. Report for Tinker Air Force Base, Oklahoma City, Oklahoma. February.

ATTACHMENTS

ATTACHMENT A RISK CALCULATIONS

AREA 1 ON-BASE WEST SOLDIER CREEK

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) INGESTION EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: CDI = (CW X IR X ET X EF X ED)/ (BW X AT1 X AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water
IR = Ingestion Rate = 0.0025 L/hour
ET = Exposure Time = 4 hours per day
EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years BW = Body Weight = 70 kg ATI = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals						1	(4444655)
Antimony	3.90E-04	1.53E-10	4.00E-04	3.82E-07	1.09E-11		
Arsenic	3.80E-03	1.49E-09	3.00E-04	4.96E-06	1.06E-10	1.50E+00	1.59E-10
Cadmium	3.70E-04	1.45E-10	5.00E-04	2.90E-07	1.03E-11	1.502.00	1:37E-10
Cobalt	9.90E-04	3.87E-10	6.00E-02	6.46E-09	2.77E-11	 	
Nickel	2.20E-02	8.61E-09	2.00E-02	4.31E-07	6.15E-10		
Vanadium	2.20E-03	8.61E-10	7.00E-03	1.23E-07	6.15E-11		
Semivolatile Organics			· · · · · · · · · · · · · · · · · · ·				
bis(2-Ethylhexyl)phthalate	4.30E-03	1.68E-09	2.00E-02	8.41E-08	1.20E-10	1.40E-02	1.68E-12
Volatile Organics					1.202 10	1.40L-02	1.0003-12
Acetone	3.70E-03	1.45E-09	1.00E-01	1.45E-08	1.03E-10		
Chloromethane	1.10E-03	4.31E-10			3.08E-11	1.30E-02	4.00E-13
Styrene	2.80E-03	1.10E-09	2.00E-01	5.48E-09	7.83E-11	1.50L-02	4.00E-13
	J						4.00
		НАТ	ARD INDEX =	6.29E-06	TOTAL	CANCED DICK	1.615.10

HAZARD INDEX = 6.29E-06

TOTAL CANCER RISK = 1.61E-10

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) INGESTION EXPOSURE TO CHEMICALS IN SURFACE WATER **ON-BASE CONSTRUCTION WORKER - RME** (CURRENT AND FUTURE USE SCENARIO)

Equation: CDI = (CW X IR X ET X EF X ED)/(BW X AT1 X AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water IR = Ingestion Rate = 0.005 L/hour ET = Exposure Time = 8 hours/day

EF = Exposure Frequency = 5 days per year

ED = Exposure Duration = 25 years BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Antimony	5.50E-04	4.31E-09	4.00E-04	1.08E-05	1.54E-09		
Arsenic	3.80E-03	2.97E-08	3.00E-04	9.92E-05	1.06E-08	1.50E+00	1.59E-08
Cadmium	8.80E-04	6.89E-09	5.00E-04	1.38E-05	2.46E-09		
Cobalt	1.80E-03	1.41E-08	6.00E-02	2.35E-07	5.03E-09		
Nickel	5.20E-02	4.07E-07	2.00E-02	2.04E-05	1.45E-07		
Vanadium	4.90E-03	3.84E-08	7.00E-03	5.48E-06	1.37E-08		
Semivolatile Organics							
bis(2-Ethylhexyl)phthalate	4.30E-03	3.37E-08	2.00E-02	1.68E-06	1.20E-08	1.40E-02	1.68E-10
Volatile Organics							
Acetone	3.70E-03	2.90E-08	1.00E-01	2.90E-07	1.03E-08		
Chloromethane	1.10E-03	8.61E-09			3.08E-09	1.30E-02	4.00E-11
Styrene	3.40E-03	2.66E-08	2.00E-01	1.33E-07	9.51E-09		
	<u></u>	HAZ	L ARD INDEX =	1.52E-04	TOTAL	CANCER RISK =	1.61E-08

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIOS)

Equation: CDI = (CW x SA x PC x ET x EF x ED x CF)/(BW x AT1 x AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water

SA = Skin Surface Area Available for Contact = 2,000 cm² PC = Chemical-specific Dermal Permeability Constant

ET = Exposure Time = 4 hours per day EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years

CF = Volumetric Conversion Factor for Water = 0.001 L/cm³

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

			NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	PC ^a	CDI	RID	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(cm/hr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals								
Antimony	3.90E-04	1 00E-03	1.22E-10	4.00E-04	3.05E-07	8.72E-12		
Arsenic	3.80E-03	1.00E-03	1.19E-09	3.00E-04	3.97E-06	8.50E-11	1.50E+00	1.27E-10
Cadmium	3.70E-04	1.00E-03	1.16E-10	5.00E-04	2.32E-07	8.28E-12		
Cobalt	9 90E-04	1.00E-03	3 10E-10	6.00E-02	5.17E-09	2.21E-11		
Nickel	2 20E-02	1.00E-03	6 89E-09	2.00E-02	3.44E-07	4.92E-10		
Vanadium	2 20E-03	1.00E-03	6 89E-10	7.00E-03	9 84E-08	4.92E-11		
Semivolatile Organics								
bis(2-Ethylhexyl)phthalate	4 30E-03	3 20E-02	4 31E-08	2.00E-02	2.15E-06	3.08E-09	1.40E-02	4 31E-11
Volatile Organics								
Acetone	3 70E-03							
Chloromethane	1 10E-03							
Styrene	2.80E-03							

HAZARD INDEX = 7 11E-06

TOTAL CANCER RISK = 171E-10

Note

a Due to the volatility, volatile organics are assumed not available for dermal absorption

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - RME (CURRENT AND FUTURE USE SCENARIOS)

Equation: CDI = (CW x SA x PC x ET x EF x ED x CF)/(BW x AT1 x AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water

SA = Skin Surface Area Available for Contact = 9,800 cm² PC = Chemical-specific Dermal Permeability Constant

ET = Exposure Time = 8 hours per day EF = Exposure Frequency = 5 days per year

ED = Exposure Duration = 25 years

CF = Volumetric Conversion Factor for Water = 0.001 L/cm³

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

			NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	PC ⁴	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(cm/hr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals								
Antimony	5.50E-04	1.00E-03	8 44E-09	4.00E-04	2.11E-05	3.01E-09		
Arsenic	3.80E-03	1.00E-03	5.83E-08	3.00E-04	1.94E-04	2 98E-08	1.50E+00	3 12E-08
Cadmium	8.80E-04	1.00E-03	1.35E-08	5.00E-04	2.70E-05	4.82E-09		
Cobalt	1.80E-03	1 00E-03	2.76E-08	6.00E-02	4.60E-07	9.86E-09		
Nickel	5 20E-02	1.00E-03	7 98E-07	2.00E-02	3.99E-05	2.85E-07		
Vanadium	4 90E-03	1 00E-03	7.52E-08	7 00E-03	1 07E-05	2.68E-08		
Semivolatile Organics								
bis(2-Ethylhexyl)phthalate	4 30E-03	3 20E-02	2.11E-06	2 00E-02	1.06E-04	7.54E-07	1.40E-02	1 06E-08
Volatile Organics								
Acetone	3.70E-03							
Chloromethane	1 10E-03							
Styrene	3 40E-03							

HAZARD INDEX = 3 99E-04

TOTAL CANCER RISK = 4 18E-08

Note

a Due to the volatility, volatile organics are assumed not available for dermal absorption.

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT USE SCENARIO)

Equation CDI = $(CS \times CF \times SA \times AF \times ABS \times EF \times ED)/(BW \times AT1 \times AT2)$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CS = Concentration in Sediments CF = Conversion Factor (10⁻⁶ kg/mg)

SA = Skin Surface Area Available for Contact = 2,000 cm²

AF = Dermal Soil Adherence Factor = 0.2 mg/cm²

ABS = Absorption Factor = 1.0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 1 day per year ED = Exposure Duration = 5 years BW = Body Weight = 70 kg

AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

	NON-CANCER		HAZARD	CANCER		CANCER
CS	CDI	RID	QUOTIENT	CDI	SF	RISK
(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
						and the same transfer out to the same year to
8 50E-01	1 33E-11	5 00E-03	2 66E-09	9.51 E-13	4 30E+00	4 09E-12
1.60E+01	2 50E-10	1 00E-03	2 50E-07	L 79E-11		
1 90E-01	2 97E-10	6 00E-02	4 96E-09	2.12E-11		
8 30E -01	1.30E-09	NTF		9 28E-11	NTF	
1 30E-01	2 04E-12	3 00E-04	6 78E-09	1.45E-13		
3 56E-02	5 57E-09	2 00E-02	2.79E-07	3 98E-10		
2 30E+01	3 60E-10	5 00E-03	7 20E-08	2 57E-11		
1.12E+02	1 75E-09	8 00E-05	2 19E-05	1 25E-10		
1 90E-01	5 I 1 E - I 0	7 00E-03	8 72E-08	4 36E-11		
7 40E-03	1.16E-12			3 28E-14	3.41E-01	2 82E-14
3.70E-i)3	5.79E-13	3 00E-05	1 93E-08	4 [4E-]4	1.70E+01	7 03E-13
6-90E-4)T	1.08E-10	2 00E-05	5 40E-06	7.72E-12	1.00E+00	7 72E-12
2.80E-03	4 38E-13	1.30E-05	3.37E-08	3 13E-14	→ 10E+00	2.85E-13
5 10E-02	9.55E-12	3 00E-01	3 18E-11	6 82E-13		
4 60E-01	7 20E-11			5 14E-12	7 30E-01	3 76E-12
8 40E-01	1 32E-10			9 39E-12	7.30E+00	6 86E-11
7 80E-01	1 22E-10			8 72E-12	7 30E-01	6 37E-12
7.50E-01	1.17E-10	3 00E-02	3.91E-09	8 39E-12		
8 20E-01	1.28E-10			9 17E-12	7 30E-02	6 69E-13
5 80E-01	9.08E-11			5 49E-12	7 30E-03	4 73E-14
2 00E-01	3 13E-11	1 00 E -01	3.13E-10	2 24E-12		
3.60E-01	5 64E-11			4 03E-12	7.30E+00	2 94E-11
8 20E-01	1.28E-10	4 00E-02	3.21E-09	9 17E-12		
7.00E-01	1.10E-10			7 83E-12	7 30E-01	5.71E-12
4 80E-01	7.51E-11	3 OOE-02	2 50E-09	5 37E-12		
7.00E-01	1.10E-10	3 00E-02	3-65E-09	7.83E-12		
1.40E-01	2 19E-11	2.00E-02	1.10E-09	1.57E-12	1.40E-02	2 19E-14
1.80E-02	2 82E-12	1:00E-01	2.82E-11	2.01E-13		
5.70E-03	8 92E-13	L00E-01	8 92E-12	o 37E-14		
4:0E=03	o 26E-13			4.47E-14	1.30E-02	5.81E-16
4 50E-03	7.05E-13	1.00E-01	7.05E-12	5 03E-14		
1.40E=)3	2 19E-13	5 00E-02	3 65E-12	1.57E-14	7.50E-03	1.17E-16
5.30E=)2	8 30E-12	2-X0E-01	4 15E-11	5.93E-13		1
9.40E=03	1.47E-12	2.00E-01	7.36E-12	1 05E-13		
2 30E ->3	4 38E-13		<u> </u>	3 (3E-14	1.90E+00	5 95E-14
	(mg/kg) 8 50E-01 1 60E-01 1 90E-01 1 30E-01 1 30E-01 3 56E-02 2 30E-01 1 12E-02 3 90E-01 7 40E-03 3 70E-03 6 90E-01 2 80E-01 8 40E-01 8 20E-01 5 80E-01 6 8 20E-01 7 50E-01 8 4 80E-01 7 50E-01 8 4 80E-01 7 50E-01 1 4 80E-01 1 5 70E-01 1 4 80E-01 1 4 80E-01 1 5 70E-01 1 5 70E-01 1 4 80E-01 1 5 70E-01	CS (mg/kg) (mg/kg-dy) 8 50E-01 1 33E-11 1 60E-01 2 50E-10 1 90E-01 2 97E-10 8 30E-01 1 30E-09 1 30E-01 2 04E-12 3 56E-02 5 57E-09 2 30E-01 3 60E-10 1 12E-02 1 75E-09 3 90E-01 5 11E-10 7 40E-03 1 16E-12 3 70E-03 5 79E-13 6 90E-01 1 08E-10 2 80E-01 7 20E-11 8 40E-01 7 20E-11 8 40E-01 1 32E-10 7 50E-01 1 17E-10 8 20E-01 1 12E-10 7 50E-01 1 17E-10 8 20E-01 1 28E-10 7 50E-01 1 10E-10 1 4 80E-01 7 50E-11 8 20E-01 1 28E-10 7 50E-01 1 10E-10 1 4 80E-01 7 50E-11 8 20E-01 1 10E-10 1 4 80E-01 1 28E-10 7 50E-01 1 10E-10 1 4 80E-01 7 51E-11 7 60E-01 1 10E-10 1 4 80E-01 1 29E-11 1 5 70E-03 8 92E-13 1 4 60E-03 0 2 6E-13 1 4 60E-03 0 2 6E-13 1 5 30E-02 3 30E-12 9 40E-03 1 4 7E-12	CS (mg/kg) (mg/kg-dy) (mg/kg-dy) 8 50E-01 1 33E-11 5 00E-03 1 60E-01 2 50E-10 1 00E-03 1 90E-01 2 97E-10 6 00E-02 8 30E-01 1 30E-09 NTF 1 30E-01 2 04E-12 3 00E-04 3 50E-02 5 57E-09 2 00E-02 2 30E-01 3 60E-10 5 00E-03 1 12E-02 1 75E-09 8 00E-05 1 12E-02 1 75E-09 8 00E-05 3 90E-01 6 11E-10 7 00E-03 7 40E-03 1 16E-12 3 00E-05 5 90E-01 1 08E-10 2 00E-05 5 80E-01 3 5 20E-13 3 00E-05 5 80E-01 1 08E-10 2 00E-05 5 80E-01 1 12E-10 3 00E-05 5 80E-01 1 12E-10 3 00E-01 8 40E-01 1 12E-10 3 00E-02 8 20E-01 1 12E-10 3 00E-02 1 3 00E-01 3 13E-11 1 00E-01 3 00E-01 3 13E-11 1 00E-01 3 00E-01 1 10E-10 4 00E-02 7 00E-01 1 10E-10 3 00E-02 1 40E-01 2 19E-11 3 00E-02 1 40E-01 2 19E-11 20E-01 1 40E-01 2 19E-11 20E-01 1 40E-01 2 19E-11 20E-01 1 40E-01 2 19E-11 100E-01 1 40E-03 3 2 0E-13 100E-01 1 40E-03 5 00E-02 5 50E-03 8 92E-13 100E-01 1 40E-03 2 19E-13 100E-01 1 40E-03 2 19E-13 100E-01 5 50E-02 8 30E-12 2 10E-01 5 50E-02 8 30E-12 2 10E-01	CS (mg/kg) CDI (mg/kg-dy) RID (mg/kg-dy) QUOTIENT (unitless) 8 50E-01 1 33E-11 5 00E-03 2 66E-09 1 60E-01 2 50E-10 1 00E-03 2 50E-07 1 90E-01 2 97E-10 6 00E-02 4 96E-09 8 30E-01 1 30E-09 NTF 1 30E-01 2 04E-12 3 00E-04 6 78E-09 3 50E-02 5 57E-09 2 00E-02 2 79E-07 2 30E-01 3 60E-10 5 00E-03 7 20E-08 1 12E-02 1 75E-09 8 00E-05 2 19E-05 3 90E-01 5 11E-10 7 00E-03 8 72E-08 7 40E-03 1 16E-12 3 00E-05 2 19E-05 3 70E-03 5 79E-13 3 00E-05 5 40E-06 5 90E-01 1 10E-12 3 00E-05 5 40E-06 2 80E-03 4 38E-13 1 30E-05 3 37E-08 5 10E-02 5 55E-12 3 00E-01 3 18E-11 4 50E-01 1 32E-10 7 20E-11 2 82E-10 7 50E-01 1 17E-10 3 00E-02	CS CDI (mg/kg) RfD (mg/kg-dy) QUOTIENT (unitless) CDI (mg/kg-dy) 8 50E-01 1 33E-11 5 00E-03 2 66E-09 9 51E-13 1 60E+01 2 50E-10 1 00E-03 2 50E-07 1 79E-11 1 90E-01 2 97E-10 6 00E-02 4 96E-09 2 12E-11 8 30E+01 1 30E-09 NTF 9 28E-11 1 30E-01 2 04E-12 3 00E-04 6 78E-09 1 45E-13 3 56E-02 5 57E-09 2 00E-02 2 79E-07 3 98E-10 2 30E-01 3 60E-10 5 00E-03 7 20E-08 2 57E-11 1 12E-02 1 75E-09 8 00E-05 2 19E-05 1 25E-10 3 90E-01 5 11E-10 7 00E-03 8 72E-08 4 36E-11 7 40E-03 1 16E-12 3 28E-14 3 28E-14 3 70E-03 5 79E-13 3 00E-05 1 93E-08 4 14E-14 5 90E-01 1 08E-10 2 00E-05 5 40E-06 7 72E-12 2 80E-03 4 38E-13 1 30E-05 3 37E-08 3 13E-14	CS (me/kg) CDI (mg/kg-dy) RTD (mg/kg-dy) QUOTIENT (unitess) CDI (mg/kg-dy) SF (mg/kg-dy) 8 SOE-01 1 338-11 5 00E-03 2 66E-09 9 51E-13 4 30E+00 1 60E-01 2 50E-10 1 00E-03 2 50E-07 1 79E-11 1 00E-01 8 30E-01 1 30E-09 NTF 9 28E-11 NTF 3 56E-02 5 57E-09 2 00E-02 2 79E-07 3 98E-10 2 30E-01 3 60E-10 5 00E-03 7 20E-08 2 57E-11 1 12E-02 1 75E-09 2 00E-02 2 79E-07 3 98E-10 2 30E-01 3 60E-10 5 00E-03 7 20E-08 2 57E-11 1 12E-02 1 75E-09 8 00E-05 2 19E-05 1 25E-10 3 70E-01 5 11E-10 7 00E-03 8 72E-08 4 36E-11 7 40E-03 1 16E-12 3 00E-05 1 93E-08 4 14E-14 1 70E-01 3 70E-03 1 5 79E-13 3 00E-05 5 40E-06 7 72E-12 1 00E-00 2 80E-03 4 38E-10 2 00E-05 <td< td=""></td<>

HAZARDINDEX : 2816-05 FOTAL CANCERRISK : : 276-10

NTF No critical toxicity values. Surjuicate his city values are not available to chese chemicals, therefore, they were not evaluated in the quantitative rock assessment.

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS **ON-BASE CONSTRUCTION WORKER - RME** (CURRENT USE SCENARIO)

Equation $CDI = (CS \times CF \times SA \times AF \times ABS \times EF \times ED)/(BW \times AT1 \times AT2)$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CS = Concentration in Sediments

CF = Conversion Factor (10-6 kg/mg)

SA = Skin Surface Area Available for Contact = 9,800 cm²

AF = Deri: .. Soil Adherence Factor = 1.0 mg/cm2

ABS = Absorption Factor = 1.0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 5 days per year

ED = Exposure Duration = 25 years

BW = Body Weight = 70 kg

ATI = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor

RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CS	CDI	R/D	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Beryllium	1.20E+00	2 30E-09	5 00E-03	4 60E-07	3 22E-10	4 30E+00	3 53E-09
Cadmium	8 00E+01	1 53E-07	1.00E-03	1 53E-04	5.48E-08		
Cobalt	4 50E+01	8 63E-08	6 00E-02	1.44E-06	3 08E-08		
Lead	2 80E+02	5.37E-07	NTF		1 92E-07	NTF	
Mercury	3 80E-01	7.29E-10	3 00E-04	2 43E-06	2 60E-10	-	
Nickel	1.43E+03	2.74E-06	2 00E-02	1.37E-04	9.79E-07		*******
Silver	9 90E+01	1 90E-07	5 00E-03	3 80E-05	5.78E-08		
Thallium	1 27E+02	2 44E-07	8 00E-05	3 04E-03	3 70E-08	1	
Vanadium	5 60E+01	1 07E-07	7.00E-03	1.53E-05	3 84E-08		·
PCBs/Pesticides	<u> </u>	 					
4,4'-DDE	8 50E-03	1 63E-10			5.82E-11	3 41E-01	1 99E-11
Aldrin	6 70E-03	1 28E-10	3 00E-05	4 28E-06	4 59E-11	1.70E+01	7 80E-10
Aroclor 1254	4.40E+00	8 44E-08	2 00E-05	4 22E-03	3.01E-08	2 00E+00	5 03E-08
Heptachlor epoxide	2 80E-03	5 37E-11	1.30E-05	4 13E-06	1 92E-11	9 10E+00	1.75E-10
Semivolatile Organics	<u> </u>	<u> </u>					
Anthracene	6 10E-02	L 17E-09	3 OOE-01	3 90E-09	4 13E-10	1	
Benzo(a)anthracene	1.90E+00	3 64E-08			130E-08	7 30E-01	9 50E-09
Benzo(a)pyrene	5 20E+00	9 97E-08	†		3 56E-08	7 30E+00	2 60E-07
Benzo(b)fluoranthene	4 20E+00	8 05E-08	<u> </u>		2 88E-08	7 30E-01	2 10E-08
Benzo(g,h,i)perviene	3 70E+00	7 10E-08	3 00E-02	2.37E-06	2.53E-08		
Benzo(k)fluoranthene	4 10E+00	7.86E-08			2 81E-08	7.30E-02	2.05E-09
Chrysene	2.50E+00	4.79E-08			1.71E-08	7.30E-03	1.25E-10
Di-n-butyl phthalate	2 00E-01	3.84E-09	1 00E-01	3.84E-08	137E-09		
Dibenz(a,h)anthracene	5 80E-01	1 30E-08			4 06E-09	7.30E+00	3 40E-08
Fluoranthene	3.40E+00	152E-08	4-00E-02	1-63E-06	2 33E-08		
Indeno(1,2,3-cd)pyrene	2.50E+00	4.79E-08	<u> </u>		+71E-08	7 30E-01	1 25E-08
Phenanthrene	2 30E+00	4.41E-08	3 00E-02	1.47E-06	1.58E-08		<u></u>
Pyrene	2 80E+00	5.37E-08	3.00E-02	1.79E-06	1 92E-08	<u> </u>	
bis(2-Ethylhexyl)phthalate	1.40E-01	2 68E-09	2 00E-02	1.34E-07	9.59E-10	1.40E-02	1.34E-11
Volatile Organics		1	1		1	†	
Acetone	4 70E-02	→01E-10	1.00E-01	9.01E-09	3 22E-10	1	
Carbon disulfide	5.70E-03	i 09E-10	1:00 E -01	1-09E-09	3-90E-11		
Chloromethane	4 ()0E-03	7.67E-11		İ	2.74E-11	130E-02	3.56E-13
Ethylbenzene	4 50Ex)3	3.63E-11	1.20E-01	3 63E-10	3-08E-11	1	
Methylene chloride	1.40E-03	2 98E-11	5 00E-02	4.47E-10	9.59E-12	7 50E-03	7 19E-14
Styrene	2 30E-01	4.41E-i)9	2-00E-01	2.21E-08	1.58E-09		
Toluene	2.50E-02	4 FOE:10	2-90E-01	2.40E-09	1.71E-10		
Vinvi chloride	2.80E-03	5 17E . 1			1.42E-11	; ±0E±00	3.54E-11

TraBlack HAZARD INDEX TOTAL CANCER RISK 4-)4E-07

NTF - No critical toxicity values. Surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the auantitative risk assessment

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT USE SCENARIO)

Equation $CDI = (CS \times CF \times IR \times EF \times ED)/(BW \times AT1 \times AT2)$

Hazard Quotient = CDI / RfD Cancer Risk = CD1 x Slope Factor

Where: CDI = Chronic Daily Intake

CF = Conversion Factor (10 kg/mg) IR = Sediment Ingestion Rate = 10 mg/day EF = Exposure Frequency = 1 day per year ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Average Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor

RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CS	CDI	RID	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dv)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals	(12,000)	7.3.4					
Bervilium	8 50E-01	3.33E-10	5 00E-03	6 65E-08	2 38E-11	4 30E+00	1 02E-10
Cadmium	1 60E+01	6 26E-09	1 00E-03	o 26E-06	4 47E-10		
Cobalt	1 90E+01	7 44E-09	6 00E-02	1 24E-07	5 31E-10		
Lead	8 30E+01	3 25E-08	NTF		2 32E-09	NTF	
Mercury	1 30E-01	5.09E-11	3 00E-04	1 70E-07	3 63E-12		
Nickel	3 56E+02	1 39E-07	2 00E-02	6 97E-06	9 95E-09		
Silver	2 30E+01	9 00E-09	5 00E-03	1 80E-06	6.43E-10		
Thallium	1 12E+02	4 38E-08	8 00E-05	5 48E-04	3 13E-09		
Vanadium	1 90E+01	1 53E-08	7 00E-03	2 18E-06	1 09E-09		
PCBs/Pesticides	1						
4 4'-DDE	7 40E-03	2 90E-12			2 07E-13	3.41E-01	7 05E-14
Aldrin	3.70E-03	1.45E-12	3 00E-05	4 83E-08	1.03E-13	1 70E+01	1.76E-12
Aroclor 1254	6 90E-01	2 70E-10	2 00E-05	1 35E-05	193E-11	1.00E+00	1 93E-11
Heptachior epoxide	2 80E-03	1 10E-12	1.30E-05	8 43E-08	7.83E-14	9 10E+00	7 12E-13
Semivolatile Organics	2 302 33	1 172 12			<u> </u>		
Anthracene	6 10E-02	2 39E-11	3.00E-01	7.96E-11	1.71E-12		
Benzo(a)anthracene	4 o0E-01	1 80E-10			1.29E-11	7.30E-01	9.39E-12
Benzo(a)pyrene	8 40E-01	3.29E-10			2.35E-11	7 30E+00	1.71E-10
Benzo(b)tluoranthene	7 80E-01	3 05E-10			2 18E-11	7 30E-01	1 59E-11
Benzo(g.h.i)pervlene	7 50E-01	2 94E-10	3.00E-02	9 78E-09	2 10E-11		
Benzo(k)tluoranthene	8 20E-01	3.21E-10	<u> </u>		2 29E-11	7 30E-02	1 67E-12
Chrysene	5 80E-01	2 27E-10			1.62E-11	7 30E-03	1 18E-13
Di-n-butyl phthalate	2 00E-01	7.83E-11	1 00E-01	7.83E-10	5 59E-12	1	
Dibenzia h)anthracene	3 60E-01	1.41E-10			1 01E-11	7.30E+00	7.35E-11
Fluoranthene	8 20E-01	3 21E-10	4 00E-02	8 02E-09	2.29E-11		
Indeno(1,2,3-cd)pyrene	7.00E-01	2.74E-10			1.96E-11	7 30E-01	1.43E-11
Phenanthrene	4 80E-01	1 88E-10	3 00E-02	6.26E-09	1.34E-11		
Pyrene	7 00E-01	2.74E-10	3 00E-02	9 13E-09	1.96E-11		
bis(2-Ethylhexyl)phthalate	1.40E-01	5.48E-11	2.00E-02	2.74E-09	3.91E-12	1.40E-02	5 48E-14
Volatile Organics	1						
Acetone	1.80E-02	7 05E-12	1 00E-01	7.05E-11	5.03E-13		
Carbon disulfide	5.70E-03	2.23E-12	1:00E-01	2.23E-11	1.59E-13		
Chloromethane	4 00E-03	1.57E-12			1.12E-13	1 30E-02	1.45E-15
Fthylbenzene	4 50E-03	1.76E-12	1.00E-01	1.76E-11	1.26E-13		
Methylene chloride	1.40E-03	5.48E-13	5 00E-02	9 13E-12	191E-14	7 50E-03	2 94E-16
Styrene	5 30E-02	2 07E-11	2.00E-01	1 04E-10	± 48E-12		
Toluene	7.40E-03	3 58E-12	2.00E-01	1 84E-11	2 53E-13		
V invl chloride	2.80E=)1	1.10E-12		1	7 33E-14	1.50E+00	1.49E-13
		†					

HAZARD INDEX 5.79E±04 TOTAL CANCER RISK = 4 10E-10

NTF No critical toxicity varies. Surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (CURRENT USE SCENARIO)

Equation $CDI = (CS \times CF \times IR \times EF \times ED)/(BW \times ATI \times AT2)$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CS = Concentration in Sediments
CF = Conversion Factor (10th kg/mg)
IR = Sediment Ingestion Rate = 50 mg/day
EF = Exposure Frequency = 5 days per year
ED = Exposure Duration = 25 years

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Average Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER	I	CANCER
CHEMICALS	CS	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals						Ì	
Beryllium	1.20E+00	1.17E-08	5 00E-03	2 35E-06	4 19E-09	4 30E+00	1 80E-08
Cadmium	8 00E+01	7 83E-07	1 00E-03	7 83E-04	2 80E-07		
Cobalt	4 50E+01	4 40E-07	6 00E-02	7.34E-06	1 57E-07		
Lead	2 80E+02	2 74E-06	NTF		9 78E-07	NTF	
Mercury	3 80E-01	3 72E-09	3 00E-04	1.24E-05	L 33E-09		
Nickel	I 43E+03	1.40E-05	2 00E-02	7 00E-04	5 00E-06		
Silver	9 90E +01	9 69E-07	5 00E-03	1.94E-04	3 46E-07		
Thallium	1.27E+02	1.24E-06	8 00E-05	1.55E-02	4 44E-07		
Vanadium	5 60E+01	5.48E-07	7 00E-03	7 83E-05	1.96E-07		
PCBs/Pesticides							
4,4'-DDE	8 50E-03	8 32E-11			2.97E-11	3.41E-01	1.01E-11
Aldrin	6.70E-03	6.56E-11	3 90E-05	2.19E-06	2.34E-11	170E+01	3 98E-10
Arocior 1254	4-40E=00	4.31E-08	2 00E-05	2.15E-03	1.54E18	2.00E+00	3 08E-08
Heptachlor epoxide	2 80E-03	2.74E±11	1.30E-05	2.11E-06	9.78E-12	9 10E+00	8 90E-11
Semivolatile organics							
Anthracene	6 10E-02	5 97E-10	3-00E-01	1 99E-09	2 13E-10		
Benzo(a)anthracene	190E+00	1.86E-08			5 64E-09	7 30E-01	4 85E-09
Benzo(a)pvrene	5.20E -00	5.09E-08			1 82E-08	7.30E+00	1 33E-07
Benzo(b)fluoranthene	4.20E+00	4 11E-08			1 47E-08	7.30E-01	1 07E-08
Benzo(g,h,i)pervlene	3.70E+00	3 52E-08	3.00E-02	1.21E-06	1 29E-08	100.01	1 07E-08
Benzo(k)fluoranthene	4 10E+00	4 01E-08			1 43E-08	7 30E-02	L 05E-09
Chrysene	2.50E+00	2.45E-08			3.74E-09	7 30E-03	5 38E-11
Di-n-butyl phthalate	2 00E-01	i 96E-09	L00E-01	1.96E-08	5 99E-10	7 3000-003	9 300-11
Dibenz(a,h)anthracene	5 80E-01	o 65E-09			2 38E-09	7.30E+00	1.73E-08
Fluoranthene	1.40E+00	1.33E-08	4 J0E-02	3.32E-07	L 19E-08	3.72 3.0	1 730-00
Indeno(1,2,3-cd)pyrene	2.50E±00	2.45E-08			3.74E-09	7.30F-01	5 38E-09
Phenanthrene	2.30E+00	2.25E-08	1:00E=02	7.50E-07	3 ()4E-09	. 0/1,50/1	0.100-09
Pyrene	2.80E+00	2.74E-08	3-00E-02	9.13E-07	⇒ 78E-09	 	
bisi 2-Ethylhexyl)phthalate	1.40E-01	1 37E-09	2 00E-02	5.85E-08	4 39E-10	1.40E-02	o 85E-12
Volatile Organics					10 2 10	1.401.02	0.406-12
Acetone	4.70E-02	4 o0E-10	1-90E-01	4 50F-09	1 64E-10		
Carbon disulfide	5.70E-03	5.58E-11	1.00E-01	5 58E-10	1 99E-11	 	
Chloromethane	4 00E-03	3.91E-11			1.40E-11	1.30E-02	1 82E-13
Ethylbenzene	4 50E-03	4 40E-11	1.00E-01	4.40E-10	1.57E-11	1 / 12/502	1 3-E-1)
Methylene chioride	1.40E-03	1 37E-11	6 00E-02	2.28E-10	4 89E-12	7 50F-03	3 67E-14
Styrene	2.30E-01	2.25E-09	2 00E-01	1 13E-08	3 04E-10	31.E-03) 0/E-14
Toluene	2.50E-02	2.45E-10	2 00E-01	1 22E-09	3 74E-11	-	
Vinvi chloride	2 80E-33	2.74E-11	2		1 78E-12	1.20E+00	1.86E-11

HAZARD INDEX - 1 15E-92 TOTAL CANCER RISK - 2 22E-97

NTE - No critical reviews - surrocate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment.

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER -AVERAGE EXPOSURE (FUTURE USE SCENARIO)

Equation $CDI = (CS \times CF \times SA \times AF \times ABS \times EF \times ED)/(BW \times AT1 \times AT2)$

Hazard Quotient = CDI / RfD

Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CS = Concentration in Sediments

CF = Conversion Factor (10 * kg/mg)

SA = Skin Surface Area Available for Contact = 2,000 cm²

AF = Dermal Soil Adherence Factor = 0.2 mg/cm²

ABS = Absorption Factor = 1.0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg

ATI = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects,

5 years for effects other than carcinogenic)

SF = Slope Factor

RfD = Reference Dose

	NON-CANCER			HAZARD	CANCER	1	CANCER
CONTAMINANTS	CS.	CDI	RnD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(reg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Antimony	4 50E+00	7.05E-11	4 00E-04	1 76E-07	5 03E-12		
Beryllium	7 40E-01	1 16E-11	5 00E-03	2 32E-09	8 28E-13	4 30E+00	3 56E-12
Cadmium	2.20E+01	3 44E-10	1 00E-03	3 44E-07	2.46E-11	4302.00	3 30E-12
Chromium	3 20E+02	5.01E-09	5 00E-03	1 00E-06	3 58E-10		
Cobalt	2 40E+01	3 76E-10	6 00E-02	6 26E-09	2.68E-11		
ead	9.40E+01		NTF	0 202 37	2.002 11	NTF	
Mercury	1 00E-01	1 57E-12	3 00E-04	5 22E-09	1 12E-13		
Nickel	4 40E+02	6 89E-09	2 00E-02	3 44E-07	4 92E-10		
Silver	4 00E+01	6 26E-10	5 00E-03	1 25E-07	4 47E-11		
Thallium	9.60E+01	1.50E-09	8 00E-05	1 88E-05	1 07E-10		
Vanadium	3 80E+01	5.95E-10	7 00E-03	8 50E-08	4 25E-11		
PCBs/Pesticides	1 000		7.502-03	0 30E-00	7 2.7C*11		
Aldrin	6.70E-03	1 05E-12	3 00E-05	3 50E-08	? 49E-14	1.70E+01	1.27E-12
Aroclor 1254	4 20E+00	6 58E-10	2 00E-05	3 29E-05	4 70E-11	1.00E+00	4 70E-11
Semivolatile Organics	1	7 76 17) I/L-0.1	7 (742-11	1000.00	4 /9E-11
1.2-Dichlorobenzene	5 60E-01	8 77E-11	9.00E-02	9.74E-10	6 26E-12		
2-Methylnaphthaiene	5 00E-01	7.83E-11	3 00E-02	2 61E-09	5 59E-12	-	
Acenaphthene	5 20E-01	8 14E-11	6 00E-02	1 36E-09	5 81E-12		
Anthracene	5.40E-01	8 45E-11	3 00E-01	2 82E-10	6 04E-12		
Benzidine	2 20E-01	3 44E-11	3 00E-03	1 LSE-08	2 46E-12	2 30E+02	5.45.10
Benzo(a)anthracene	7 30E-01	1 14E-10	3 00E-03	1 136-08	3 16E-12		5 66E-10
Benzo(a)pyrene	8 70E-01	1 36E-10			9 73E-12	7 30E-01	5 96E-12
Benzo(b)fluoranthene	8 90E-01	1 39E-10			9 95E-12	7.30E+00	7 10E-11
Benzolg, h. i)pervlene	5 80E-01	9.08E-11	3 :XXE-02	3-03E-09		7 10E-01	7.27E-12
Benzoik ifluoranthene	1 10E+00	1.72E-10	1 DOE-02	3 03E-09	5 49E-12	7.106.00	2
Chrysene	9 00E-01	1.41E-10			1 23E-11	7 30E-02	8 98E-13
Dibenzia hianthracene	3 90E-01	5 HE-H		-	101E-11	7 30E-03	7.35E-14
Dibenzofuran	5 20E-01	3 14E-11	4 00E-03	2045 00	4 36E-12	7.30E+00	3 18E-11
Fluoranthene	1.80E+00	2 82E-10		2.04E-08	5.81E-12		
Fluorene	5 40E-01		4 00E-02	7.05E-09	2 01E-11		
Indeno(1,2,3-cd)pyrene	5 60E-01	8 45E-11 8 77E-11	4 90E-02	2.11E-09	6 04E-12		
Naphthalene	5 90E-01	9 24E-11	1	1 335	5 26E-12	7 30E-01	4 57E-12
Phenanthrene			3 00E-02	3 08E-09	5 60E-12		
Pyrene	1 30E+00	2 04E-10	3 00E-02	5.78E-09	1.45E-11	ļ	
	1.40E+00	2 19E-10	3 00E-02	7.31E-09	1 57E-11		
Dis(2-Ethylhexyl)phthalate	1.40[5-0]	2 19E-11	2 90E-02	1 10E-09	1.57E-12	1.40E-02	2 19E-14
Volatile Organics Acetone	1.400 32	2 / 15 10					
Acetone Ethylbenzene	1.40E-02	2 19E-12	1.00E-01	2.19E-11	1 57E-13		
Methylene chioride	5.40E=03	1 (K)E-12	1-90E-01	1 00E-11	7 16E-14	<u> </u>	
Methylene chloride Styrene	1.80E-03	2 82E-13	5-00E-02	4 *0E-12	2 01E-14	7.50E-03	1.51E-16
Toluene	2.50E-02	4 F7E-12	2 ME-01	2:04E-11	2 (NE-13		<u> </u>
Loidene	5 TOE-03	1 35E-12	2 #0E-01	5.24E-12	*49E-14	-	
	1		1		1		1

NTE - No critical fosciety values. Surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment.

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (FUTURE USE SCENARIO)

Equation CDI * (CS x CF x SA x AF x ABS x EF x ED)/(BW x AT1 x AT2) Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI - Chronic Daily Intake

CS = Concentration in Sediments CF = Conversion Factor (10 tkg/mg)

SA = Skin Surface Area Available for Contact = 9,800 cm²

AF = Dermal Soil Adherence Factor = 1.0 mg/cm²

ABS = Absorption Factor = 1.0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 5 days per year ED = Exposure Duration = 25 years

BW = Body Weight = 70 kg ATI = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor

RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	C.Z	CD1	RID	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Anumony	5 (X)E+(X)	9.59E-(#)	4 00E-04	2 40E-05	3 42E-09		
Bery Ilium	9.40E-01	1 80E-09	5 00E-03	3 61E-07	6 44E-10	4.30E+(X)	2 77E-09
admium	1.60E+02	3 07E-07	1-00E-03	3 07E-04	1 10E-07		
hromium	8 00E+02	1.53E-iki	5 (X)E-i)3	3 o 7E-04	5.48E-07		
obalt	3.50E+01	6.71E-08	n 00E-02	1.12E-06	2 40E-08		
cad	1 90E+02	3 /HE-I)7	NTF		1 30E-07	NTF	
dercur.	1 80E-01	3.45E-10	3.00E-04	1.15E-06	1 23E-10		
lickel	1.40E±03	2 68E-06	2 00E-02	1.34E-04	9 59E-07		
ilver	1.70E+02	3 26E-07	5.00E-03	6.52E-05	1 16E-07		
hallium	1.30E+02	2.49E-07	8 00E-05	3 12E-03	8 90E-08		
anadium	4 80E ↔)1	9.21E-08	7:00E-03	1 32E-05	3 29E-08		
PCBs/Pesticides	T						
\ldnn	5.70E-03	1.28E-10	3.00E-05	4 28E-06	4 59E-11	1.70E+01	7 80E-10
Aroclor 1254	3 00€+01	5.75E-07	2 00E-05	2 88E-02	2 05E-07	2 (N)E+(N)	4 11E-07
Semivolatile Organics							
2-Dichlorobenzene	130E-01	1.40E-08	9.00E-02	1.56E-07	5.00£-09		
- Methy Inaphthalene	o 20E-01	1 19E-08	3 00E-02	3.96E-07	4 25E-09		
cenaphthene	7.20E-01	1.38E-0X	5 00E-02	2 30E-07	4 93E-09		
Anthracene	\$ 40E-01	1 of E-08	3.00E-01	5.37E-08	5.75E-(8)		
Senzidine	2.20E-01	4 22E-09	3-90E-03	1.41E-06	1.51E-09	2 30E+02	3.47E-07
Senzola ianthracene	i 20E+00	2.30E-08	<u> </u>		8 22E-09	7.30E-01	5 00E-09
Senzoi a /ps rene	1.50E+40	2 88E-08			1 03E-08	7 30E=00	7.50E-08
Benzo(b)fluoranthene	1 (H)E +(H)	1 o7E-08			1.10E-08	7.30E-01	\$ DDE-09
Senzo(g,h,))perviene	\$ 30E-01	1 <0E-08	3-00E-02	5.31E-07	5 GRE-09)		
Senzo(k)fluoranthene	1.30E-00	1.64E-08			1.30E-08	2 30E-02	9.50E-10
hr sene	1 <0E ↔00	2 88E-08			1 03E-08	7 30E-03	7.50E-11
ibenzi a hianthracene	\$ 10E-01	9.78E+P)			3 49E-09	7.30E+00	2.55E-08
Dibenzoturan	5 70E-01	1.28E ++8	4-00E-03	3.21E-06	4.59E-09		
luoranthene	1 (x)E +(x)	5 75E-08	4 00E-02	1.44E-06	2.05E+08		
luorene	10E-01	1.36E-08	4 (R)E=02	3.40E-07	4 86E-09		
ndenox 1.2,3-cd)pyrene	7 (8)E=01	1.52E-08			5.41E-09	2.30E-01	3.94E-09
aphthaiene	190E-01	1.52E+08	3:00E-02	5.05E-07	5.41E-(#)		
henanthrene	2 (dE+W)	4 03E-08	3-90E-02	L34E-06	[44E-48		
rene	2.20E+00	4.22E+08	3:00E-02	1.41EWi	1.51E-08		
isi 2-Ethylhexyl)phthalate	[40E-01	2 13XE-177	2.00E-02	L34E-07	9.59E-10	1.40E-02	1 14E-11
Volatile Organics							
Acctone	i 80E-02	3.42E-10	1 00E-01	3.458.09	1.23E-10		
thylbenzene	7.20E-03	1.3 %E -10	1.90E-01	138E-09	4 93E-11		-
Methylene chloride	1.80E-03	3.45E-111	5 00E-02	4.75E-10	1.23E-11	* 50E-03	9.25E-14
tyrene	2 90E-02	4 PPE-10	2 00E-01	2.49E-i19	1.78E-10		-
oluene	\$ 40F-33	1.618-10	2 00E-01	4 05E-10	4.74E-11		

HAZARD INDEX 1 3 28E-02 TOTAL CANCER RISK = \$ \$1E-07

 $S^{\rm op} \neq So\ , recall forcists\ \ (alives\ Surregate\ toxicits\ \ (alives\ are\ not\ seal about the alives\ therefore\ these\ series\ not\ coalitated$

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (FUTURE USE SCENARIO)

Equation CDI = (CS x CF x IR x EF x ED)/(BW x AT1 x AT2)

Hazard Quotient = CDI / RfD Cancer Risk * CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CS = Concentration in Sediments CF = Conversion Factor (10⁻⁶ kg/mg) IR = Sediment Ingestion Rate = 10 mg/day EF = Exposure Frequency = 1 day per year ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Average Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor

RfD = Reference Dose

	T	NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CS	CDI	RM	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Antimony	4 50E+00	1 76E-09	4 00E-04	4 40E-06	1 26E-10		
Bervllium	7.40E-01	2 90E-10	5 00E-03	5 79E-08	2 07E-11	4 30E+00	8 90E-11
Cadmium	2.20E+01	8 61E-09	1 00E-03	8 61E-06	6 15E-10		
Chromium	3 20E+02	1 25E-07	5 00E-03	2 50E-05	8 95E-09		
Cobalt	2 40E+01	9 39E-09	6 00E-02	1 57E-07	6.71E-10		
Lead	9 40E+01	3 68E-08	NTF		2 63E-09	NTF	
Mercury	1.00E-01	3 91E-11	3 00E-04	1 30E-07	2 80E-12		
Nickel	4 40E+02	1 72E-07	2 00E-02	8 61E-06	1.23E-08		
Silver	4 00E+01	1 57E-08	5 00E-03	3 13E-06	1 12E-09		
Thallium	9.60E+01	3 76E-08	8 00E-05	4 70E-04	2 58E-09		
Vanadium	3 80E+01	1.49E-08	7 00E-03	2 12E-06	1 06E-09		
PCBs/Pesticides	 						
Aldrin	6.70E-03	2 62E-12	3 00E-05	8 74E-08	1.87E-13	1.70E+01	3 18E-12
Aroclor 1254	4 20E+00	1 64E-09	2 00E-05	8 22E-05	1.17E-10	1.00E+00	1.17E-10
Semivolatile organics							
1.2-Dichlorobenzene	5 60E-01	2 19E-10	9 00E-02	2.44E-09	1.57E-11		
2-Methylnaphthalene	5.00E-01	1.96E-10	3 00E-02	o 52E-09	1.40E-11		
Acenaphthene	5 20E-01	2 04E-10	5 00E-02	3 39E-09	1.45E-11		
Anthracene	5.40E-01	2 11E-10	3 00E-01	7 05E-10	151E-11		
Benzidine	2 20E-01	8 51E-11	3 00E-03	2 87E-08	5.15E-12	2 30E+02	1.41E-09
Benzo(a)anthracene	7 30E-01	2.86E-10			2 04E-11	7 30E-01	1.49E-11
Benzo(a)pyrene	8 70E-01	3.41E-10			2 43E-11	7 30E+00	1.78E-10
Benzo(b)fluoranthene	8 90E-01	3 48E-10			2 49E-11	7 30E-01	1 82E-11
Benzo(g,h,i)perylene	5 80E-01	2 27E-10	3.00E-02	7.57E-09	1 52E-11		1 322 11
Benzo(k)fluoranthene	1 10E+00	4.31E-10			3.08E-11	7 30E-02	2 24E-12
Chrysene	9.00E-01	3 \$2E-10			2.52E-11	7.30E-03	[34E-13
Dibenz(a,h)anthracene	3 90E-01	1.53E-10			1.09E-11	7.30E+00	7 96E-11
Dibenzofuran	5 20E-01	2 04E-10	4 00E-03	5-99E-08	1.45E-11		
Fluoranthene	1.80E+00	7 05E-10	4 00E-02	1.76E-08	5.03E-11		
Fluorene	5 40E-01	2 11E-10	4 00E-02	5.28E-09	1.51E-11	<u> </u>	
Indeno(1,2,3-cd)pyrene	5 60E-01	2 19E-10			1 57E-11	7 30E-01	1 14E-11
Naphthalene	5 90E-01	2.31E-10	3.00E-02	7.70E-09	1 65E-11		
Phenanthrene	1.30E+00	5.09E-10	3 00E-02	1.70E-08	3 53E-11	<u>† </u>	
Pyrene	140E+00	5.48E-10	3 00E-02	1.83E-08	3.91E-11		
bis(2-Ethylhexyl)phthalate	1.40E-01	5.48E-11	2 00E-02	2.74Ea)9	3 91E-12	1 40E-02	5.48E-14
Volatile Organics	1					10272	
Acetone	1.40E-02	5.48E-12	1.00E-01	5.48E-11	3.91E-13	 	t
Ethylbenzene	5.40E=03	2.50E-12	i - (0E - 01	2.50E-11	"9F- 3		1
Methylene chloride	1.30E-03	7 05E-13	5.00E-02	1 17E-11	5 t/3E-14	7.50E-03	3.77E-16
Styrene	2 o0E402	1-02E-11	2.00E-01	5.09E-11	7.27E-13		t
Toluene	6.20E473	2 42E 12	2.00E-st	1 31E-11	37E-13	†	
	<u> </u>		<u> </u>		1	+	
			HAZARD INDEX			L CANCER RISK :	<u> </u>

HAZARD INDEX n 46-94 TOTAL CANCER RISK = 1 93E-09

NTE a No critical toxicity values. Surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE WEST SOLDIER CREEK (AREA 1) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (FUTURE USE SCENARIO)

Equation $CDI = (CS \times CF \times IR \times EF \times ED)/(BW \times AT1 \times AT2)$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CS = Concentration in Sediments
CF = Conversion Factor (10^A kg/mg)
1R = Sediment Ingestion Rate = 50 mg/day
EF = Exposure Frequency = 5 days per year
ED = Exposure Duration = 25 years

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Average Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

	T	NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CS	CDI	RMD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metais							
Antimony	5 00E+00	4 89E-08	4 00E-04	1 22E-04	1 75E-08		
Beryllium	9 40E-01	9 20E-09	5 00E-03	1.84E-06	3 28E-09	4 30E+00	1.41E-08
Cadmium	1.60E+02	1.57E-06	1 00E-03	1 57E-03	5 59E-07		
Chromium	8 00E+02	7.83E-06	5 00E-03	I 57E-03	2 80E-06		
Cobalt	3 50E+01	3 42E-07	6 00E-02	5 71E-06	1 22E-07		
Lead	1 90E+02	1 86E-06	NTF		6 64E-07	NTF	
Mercury	1 80E-01	1.76E-09	3 00E-04	5 87E-06	5 29E-10		
Nickel	1 40E+03	1 37E-05	2 00E-02	6 85E-04	4 89E-06		
Silver	1.70E+02	1 66E-06	5 OOE-03	3 33E-04	5 94E-07		
Thallium	1 30E+02	1 27E-06	8 00E-05	1 59E-02	4 54E-07		
Vanadium	4 80E+01	4 70E-07	7.00E-03	6 71E-05	1 68E-07		
PCBs/Pesticides	1		†				
Aldrin	6.70E-03	6 56E-11	3-30E-05	2 19E-06	2.34E-11	1.70E+01	3 98E-10
Aroclor 1254	3 00E+01	2 94E-07	2 00E-05	1.47E-02	1 05E-07	L00E+00	1 05E-07
Semivolatile organics							
1.2-Dichlorobenzene	7 30E-01	7 14E-09	9 00E-02	7 94E-08	2 55E-09		
2-Methylnaphthalene	6 20E-01	5 07E-09	3 00E-02	2 02E-07	2 17E-09		
Acenaphthene	7 20E-01	7.05E-09	5 00E-02	1 17E-07	2 52E-09		
Anthracene	8 40E-01	8 22E-09	3 00E-01	2.74E-08	2 94E-09		
Benzidine	2 20E-01	2 15E-09	3 00E-03	7 18E-07	7 69E-10	2 30E+02	1.77E-07
Benzo(a)anthracene	1 20E+00	1 17E-08	1		4 19E-09	7 30E-01	3 06E-09
Benzo(a)pyrene	1.50E+00	1.47E-08	 		5.24E-09	7.30E+00	3 83E-08
Benzo(b)fluoranthene	1 60E+00	i 57E-08	 		5 59E-09	7 30E-01	4 08E-09
Benzo(g,h,i)pervlene	8 30E-01	8 12E-09	3 00E-02	2.71E-07	2 90E-09		<u> </u>
Benzo(k)fluoranthene	1 90E+00	1 86E-08			5 64E-09	7 30E-02	4 85E-10
Chrysene	1.50E+00	1.47E-08		<u> </u>	5.24E-09	7 30E-03	3 83E-11
Dibenz(a,h)anthracene	5 10E-01	4 99E-09	·		1.78E-09	7.30E+00	1 30E-08
Dibenzofuran	6.70E-01	6.56E-09	4 00E-03	1 54E-06	2.34E-09		
Fluoranthene	1 00E -00	2 94E-08	4 00E-02	7.34E-07	1-05E-08		
Fluorene	7 10E-01	5.95E-09	4 -xcE-02	1.74E-07	2.48E-09		
Indeno(1,2,3-cd)pyrene	7 90E-01	7.73E-09	 		2.76E-09	7.30E-01	2 02E-09
Naphthalene	7.90E-01	7.73E-09	3 (WE-02	2.58E-07	2.76E-09		
Phenanthrene	2.10E+00	2 05E-08	3.00E-02	5 85E-07	7.34E-09		
Pyrene	2 20E-00	2.15E-08	3 00E-02	7 18E-07	7 69E-09	 	
bis(2-Ethylhexyl)phthalate	1.40E-01	1.17E-09	2.00E-02	5 85E-08	4 89E-10	1.40E-02	6.85E-12
Volatile Organics				†	 		1
Acetone	1.80E-02	: "nE-10	1 MGE-01	1.76E-09	o 29E-11	T	†
Ethylbenzene	7.20E-03	*)5E-11	: x0E-01	7 ()5E-10	2.52E-11		1
Methylene chloride	1-80E-03	: 76E-11	5 X0E-02	2-94E-10	5 29E-12	7 50E-03	4 72E-14
Styrene	2 noE-02	2.54E+16	2 K(E+1)	1.27E±09	7.39E-11		
Toluene	8.40E-03	3 226-11	2 **E+)/E	4 ! I E - I to	2.94E-11		
L			AZARD INDEX	3.49F-22	7.75.7	AL CANCER RISK	= 3.57E-07

HAZARD INDEX 3 19F#2 TOTAL CANCER RISK = 3 57E-07

NTE - No critical toxicity values. Surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment.

AREA 2 OFF-BASE WEST SOLDIER CREEK

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) INCIDENTAL INGESTION OF CHEMICALS IN SURFACE WATER DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = [(IRc x ETc x EFc x EDc) / BWc + (IRa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)

 $CDI = CW \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surtace Water
IRc = Child Ingestion Rate = 0.0025 L/hour
ETc = Child Exposure Time = 3 hours/day

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years BWc = Child Body Weight = 15.1 kg

IRa = Adult Ingestion Rate = 0.0025 L/hour

ETa = Adult Exposure Time = 1 hour /day

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 9 years BW = Adult Body Weight = 57.1 kg

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CW	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/L)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							8 - 77	((======================================
Antimony	4 30E-04	8.42E-06	3 62E-09	4.00E-04	9.05E-06	1.68E-06	7.24E-10		
Cadmium	4 00E-04	8.42E-06	3.37E-09	5.00E-04	6.73E-06	1.68E-06	6 73E-10		
Cobalt	2.30E-04	8.42E-06	1.94E-09	6.00E-02	3.23E-08	1 68E-06	3 87E-10		
Nickel	8.60E-03	8.42E-06	7.24E-08	2.00E-02	3.62E-06	1.68E-06	1.45E-08		
Vanadium	7.50E-03	8.42E-06	6.31E-08	7.00E-03	9 02E-06	1.68E-06	1 26E-08		
Volatile Organics							1 202 00		
Acetone	5 10E-03	8.42E-06	4.29E-08	1 00E-01	4.29E-07	1.68E-06	8.58E-09		
Bromomethane	5.60E-03	8.42E-06	4.71E-08	1 40E-03	3 37E-05	1.68E-06	9.43E-09		
Chloromethane	3.60E-03	8 42E-06	3.03E-08			1.68E-06	6.06E-09	1 30E-02	7 88E-11
Iodomethane	1 80E-03	8 42E-06	1.51E-08	NTF		1.68E-06	3 03E-09	NTF	7 00L-11
Methylene chloride	1 40E-03	8.42E-06	1.18E-08	6 00E-02	1.96E-07	1 68E-06	2 36E-09	7 50E-03	1 77E-11

HAZARD INDEX = 6 27E-05

TOTAL CANCER RISK = 9 64E-11

NTF = No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) INCIDENTAL INGESTION OF CHEMICALS IN SURFACE WATER DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = [(IRc x ETc x EFc x EDc) / BWc + (IRa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)

 $CDI = CW \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water IRc = Child Ingestion Rate = 0.005 L/hour ETc = Child Exposure Time = 6 hours/day

EFc = Child Exposure Frequency = 34 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

IRa = Adult Ingestion Rate = 0.005 L/hour

ETa = Adult Exposure Time = 2 hour /day

EFa = Adult Exposure Frequency = 4 days per year

EDa = Adult Exposure Duration = 25 years

BW = Adult Body Weight = 57.1 kg

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

SF = Slope Factor

RfD = Reference Dose

CHEMICALS OF CONCERN	CW (mg/L)	NON-CANCER HIF (L/kg-dy)	NON-CANCER CDI (mg/kg-dy)	RfD (mg/kg-dy)	HAZARD QUOTIENT (unitless)	CANCER HIF (L/kg-dy)	CANCER CDI (mg/kg-dy)	SF (mg/kg-dy)-1	CANCER RISK
Metals						((mg/kg-uy)	(mg/tg-dy)-1	(unitless)
Antimony	4.40E-04	3.24E-05	1.43E-08	4.00E-04	3.57E-05	1.39E-05	6.12E-09		
Cadmium	5.20E-04	3.24E-05	1.69E-08	5.00E-04	3.37E-05	1.39E-05	7.23E-09		
Cobalt	3.60E-04	3.24E-05	1.17E-08	6.00E-02	1.95E-07	1.39E-05	5.01E-09		
Nickel	1.60E-02	3.24E-05	5.19E-07	2.00E-02	2.60E-05	1.39E-05			
Vanadium	1.60E-02	3.24E-05	5.19E-07	7.00E-03	7.42E-05	1.39E-05	2.22E-07		
Volatile Organics			31172 01	7.0012-03	7.42E-03	1.39E-03	2.22E-07		
Acetone	5.40E-03	3 24E-05	1.75E-07	1.00E-01	1.75E-06	1.39E-05	7.51E-08		
Bromomethane	7 20E-03	3.24E-05	2.34E-07	1.40E-03	1.67E-04	1.39E-05			
Chloromethane	3.60E-03	3.24E-05	1.17E-07	1.402-03	1.07E-04	1.39E-05	1.00E-07		
Iodomethane	1.80E-03	3.24E-05	5.84E-08	NTF			5.01E-08	1.30E-02	6.51E-10
Methylene chloride	1.40E-03	3.24E-05	4 54E-08	6.00E-02	7.675.07	1.39E-05	2.50E-08	NTF	
		3.2.12.03		ARD INDEX =	7.57E-07	1.39E-05	1.95E-08	7.50E-03	1.46E-10

HAZARD INDEX = 3.39E-04

TOTAL CANCER RISK = 7.97E-10

NTF No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF ={ [(SAc x ETc x EFc x EDc) / BWc + (SAa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)} x CF

CDI = CW x PC x HIF
Hazard Quotient = CDI / RfD
Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water

PC = Chemical-specific Dermal Permeability Constant

SAc = Child Skin Surface Area Available for Contact = 1,800 cm²

ETc = Child Exposu. Time = 3 hours/day

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

SAa = Adult Skin Surface Area Available for Contact = 2,800 cm²

ETa = Adult Exposure Time = 1 hour /day

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 9 years BW = Adult Body Weight = 57.1 kg

CF = Conversion Factor (1L/1000cm²)

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

SF = Slope Factor RfD = Reference Dose

			NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CW	PC*	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	
OF CONCERN	(mg/L)	(cm/hr)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)]			RISK
Metals				9 9 7 7	((unitiess)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)
Antimony	4.30E-04	1.00E-03	6 12E-03	2.63E-09	4.00E-04	(105.0)				
Cadmium	4.00E-04	1.00E-03	6.12E-03			6.58E-06	1.22E-03	5.26E-10		
Cobalt	2.30E-04			2.45E-09	5.00E-04	4.90E-06	1.22E-03	4.90E-10		
Nickel		1.00E-03	6.12E-03	1.41E-09	6.00E-02	2.35E-08	1.22E-03	2.82E-10		
	8.60E-03	1.00E-03	6 12E-03	5.26E-08	2.00E-02	2.63E-06	1.22E-03	1.05E-08		
Vanadium	7 50E-03	1.00E-03	6 12E-03	4 59E-08	7.00E-03	6.56E-06				
Volatile Organics				1372 00	7.002-03	0.302-00	1.22E-03	9.18E-09		
Acetone	5 10E-03		6 12E-03							
Bromomethane	5.60E-03		6.12E-03				1.22E-03			
Chloromethane	3 60E-03					L	1.22E-03			
Iodomethane			6.12E-03				1.22E-03			
	1 80E-03		6 12E-03				1.22E-03			
Methylene chloride	1.40E-03		6.12E-03			 	1.22E-03			

Note

HAZARD INDEX = 2 07E-05

TOTAL CANCER RISK = 0 00E+00

a Due to the volatility, volatile organics are assumed not available for dermal absorption

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF ={ [(SAc x ETc x EFc x EDc) / BWc + (SAa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)} x CF

 $CDI = CW \times PC \times HIF$ Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where:

HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water

PC = Chemical-specific Dermal Permeability Constant

SAc = Child Skin Surface Area Available for Contact = 6,500 cm²

ETc = Child Exposure Time = 6 hours/day

EFc = Child Exposure Frequency = 34 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

SAa = Adult Skin Surface Area Available for Contact = 8,620 cm²

ETa = Adult Exposure Time = 2 hour /day

EFa = Adult Exposure Frequency = 4 days per year

EDa = Adult Exposure Duration = 25 years

BW = Adult Body Weight = 57.1 kg

CF = Conversion Factor (1L/1000cm²)

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

SF = Slope Factor

RfD = Reference Dose

			NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CW	PC*	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/L)	(cm/hr)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy) ⁻¹	(unitless)
Metals					T T			(4.16/146/47)	(IIIg/Rg-Gy)	(unitiess)
Antimony	4.40E-04	1 00E-03	4.29E-02	1 89E-08	4.00E-04	4.71E-05	1.84E-02	8.08E-09		
Cadmium	5 20E-04	1.00E-03	4 29E-02	2.23E-08	5.00E-04	4.46E-05	1.84E-02	9.55E-09		
Cobalt	3.60E-04	1.00E-03	4 29E-02	1.54E-08	6.00E-02	2.57E-07	1.84E-02	6.61E-09		
Nickel	1 60E-02	1.00E-03	4 29E-02	6.86E-07	2.00E-02	3.43E-05	1.84E-02	2.94E-07		
Vanadium	1 60E-02	1 00E-03	4 29E-02	6.86E-07	7.00E-03	9.80E-05	1.84E-02	2.94E-07		
Volatile Organics							1.012.02	2.742-07		
Acetone	5 40E-03		4 29E-02		-		1.84E-02			
Bromomethane	7 20E-03		4 29E-02				1.84E-02			ļ
Chloromethane	3.60E-03		4 29E-02		<u> </u>		1.84E-02			
Iodomethane	1 80E-03		4 29E-02		 	t	1.84E-02			
Methylene chloride	1.40E-03		4 29E-02		 	<u> </u>	1.84E-02			ļ

HAZARD INDEX = 2.24E-04

TOTAL CANCER RISK = 0.00E+00

Note:

a Due to the volatility, volatile organics are assumed not available for dermal absorption.

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) INCIDENTAL INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation HIF = $\{ |(IRc \times EFc \times EDc) / BWc + (IRa \times EFa \times EDa) / BWa | \times CF \} / (AT1x AT2) \}$

 $CDI = CS \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CS = Concentration in Sediments

IRc = Child Ingestion Rate = 100mg/day

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

IRa = Adult Ingestion Rate = 10mg/day

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 9 years

BW = Adult Body Weight = 57.1 kg

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

CF = Conversion Factor = 0.000001 kg/mg

SF = Slope Factor

RfD = Reference Dose

		NON CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	cs	HIF	CDI	RM	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals									
Antimony	3 90E+00	1 11E-07	4 32E-07	4 00E-04	1.08E-03	2.22E-08	8.64E-08		
Beryllium	2.60E-01	1 11E-07	2.88E-08	5 00E-03	5 76E-06	2 22E-08	5 76E-09	4.30E+00	2.48E-08
Cadmium	7 20E+00	1 11E-07	7 98E-07	1 00E-03	7 98E-04	2.22E-08	1 60E-07		
Chromium (VI)	2.30E+00	1 11E-07	2 55E-07	5 00E-03	5 10E-05	2.22E-08	5 10E-08		
Cobalt	6 80E+00	1 11E-07	7 53E-07	6.00E-02	1 26E-05	2.22E-08	1 51E-07		
Lead	7 50E+01	1 11E-07	8 31E-06	NTF		2.22E-08	1 66E-06	NTF	
Mercury	2 70E-02	1 11E-07	2.99E-09	3 00E-04	9 97E-06	2.22E-08	5 98E-10		
Silver	7 30E+00	1 11E-07	8 09E-07	5 00E-03	1 62E-04	2 22E-08	1 62E-07		
Vanadium	1.50E+01	1 11E-07	1 66E-06	7 00E-03	2.37E-04	2 22E-08	3 32E-07		
Pesticides/PCBs									
Aroclor 1254	2 30E+00	1.11E-07	2 55E-07	2 00E-05	1 27E-02	2 22E-08	5 10E-08	1 00E+00	5 10E-08
Semivolatile Organics									
2-Methylnaphthalene	2 20E-01	1 11E-07	2.44E-08	3 00E-02	8 12E-07	2 22E-08	4 87E-09		
Acenaphthene	6 50E-01	1 11E-07	7 20E-08	6 00E-02	1 20E-06	2 22E-08	i 44E-08		
Anthracene	9 50E-01	1 11E-07	1 05E-07	3 00E-01	3 51E-07	2 22E-08	2.10E-08		
Benzo(a)anthracene	2 60E+00	1 11E-07	2 88E-07			2 22E-08	5.76E-08	7 30E-01	4 21E-08
Benzo(a)pyrene	2 10E+00	1 11E-07	2 33E-07			2 22E-08	4 65E-08	7.30E+00	3.40E-07
Benzo(b)fluoranthene	2 40E+00	1 11E-07	2 66E-07			2 22E-08	5 32E-08	7 30E-01	3 88E-08
Benzo(g,h,i)perylene	1 00E+00	1 11E-07	1 11E-07	3 00E-02	3 69E-06	2.22E-08	2.22E-08		
Benzo(k)fluoranthene	2 20E+00	111E-07	2 44E-07			2 22E-08	4 87E-08	7 30E-02	3 56E-09
Butyl benzyl phthalate	2 70E-01	111E-07	2 99E-08	2 00E-01	1 50E-07	2 22E-08	5 98E-09	I .	
Chrysene	3 10E+00	1 11 E -07	3 43E-07			2 22E-08	6 87E-08	7 30E-03	5 01E-10
Di-n-octyl phthalate	3 10E-01	1 11E-07	3 43E-08	2 00E-02	1 72E-06	2 22E-08	6 87E-09		
Dibenz(a,h)anthracene	2 40E-01	1 11E-07	2 66E-08			2.22E-08	5 32E-09	7 30E+00	3 88E-08
Dibenzofuran	4 50E-01	1 11E-07	4 98E-08	4 00E-03	1 25E-05	2 22E-08	9 97E-09		
Fluoranthene	6 90E+00	1 11E-07	7 64E-07	4 00E-02	1 91E-05	2 22E-08	1 53E-07		
Fluorene	7 00E-01	1 11E-07	7.75E-08	4 00E-02	1 94E-06	2 22E-08	1.55E-08		
Indeno(1,2,3-cd)pyrene	1 10E+00	1 11E-07	1 22E-07	[1	2 22E-08	2.44E-08	7 30E-01	1 78E-08
Naphthalene	3 20E-01	1 HE-07	3 54E-08	3 00E-02	1 18E-06	2 22E-08	7 09E-09		
Phenanthrene	5.40E+00	1 11E-07	5 98E-07	3 00E-02	1 99E-05	2 22E-08	1 20E-07		
Pyrene	6 40E+00	1.11E-07	7 09E-07	3 00E-02	2 36E-05	2 22E-08	1 42E-07		
bis(2-Ethylhexyl)phthalate	1.30E-01	1.11E-07	1 44E-08	2 00E-02	7 20E-07	2 22E-08	2 88E-09	1 40E-02	4 03E-11
Volatile Organics									
Acetone	5.60E-03	1.11E-0?	6 20E-10	1.00E-01	6 20E-09	2 22E-08	1 24E-10		
Methylene chloride	1.80E+03	1 11E-07	1 99E-10	6 00E-02	3 32E-09	2 22E-08	3 99E-11	7 50E-03	2.99E-13

HAZARD INDEX = 1 52E-02

TOTAL CANCER RISK = 5 57E-01

NTF = No critical toxicity values is surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment.

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) INCIDENTAL INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation H1F = {[(IRc x EFc x EDc) / BWc + (IRa x EFa x EDa) / BWa| x CF}/ (AT1x AT2)

 $CDI = CS \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CS = Concentration in Sediments

IRc = Child Ingestion Rate = 100mg/day

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg IRa = Adult Ingestion Rate = 10mg/day

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 25 years

BW = Adult Body Weight = 57.1 kg

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

CF = Conversion Factor = 0.000001 kg/mg

SF = Slope Factor RfD = Reference Dose

	Ť T	NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CS	HIF	CDI	RM	QUOTIENT	HIF	CDI	SF	RISK
HEMICALS OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals	,								
Antimony	4 40E+00	2 22E-07	9 75E-07	4.00E-04	2.44E-03	9 50E-08	4.18E-07		2 225 27
Beryllium	5 10E-01	2 22E-07	1.13E-07	5 00E-03	2.26E-05	9 50E-08	4 84E-08	4 30E+00	2.08E-07
Cadmium	1 70E+01	2.22E-07	3 77E-06	1 00E-03	3.77E-03	9 50E-08	1 61E-06		
Chromium (VI)	8 40E+00	2 22E-07	1 86E-06	5 00E-03	3.72E-04	9.50E-08	7.98E-07		
Cobalt	7 30E+00	2 22E-07	1 62E-06	6.00E-02	2.70E-05	9 50E-08	6.93E-07		
Lead	2 50E+02	2 22E-07	5 54E-05	NTF		9 50E-08	2 37E-05	NTF	
Mercury	5 50E-02	2 22E-07	1 22E-08	3 00E-04	4.06E-05	9 50E-08	5 22E-09		
Silver	1 60E+01	2 22E-07	3 55E-06	5 00E-03	7 09E-04	9.50E-08	1 52E-06		
Vanadium	2 30E+01	2 22E-07	5 10E-06	7 00E-03	7 28E-04	9 50E-08	2 18E-06		
Pesticides/PCBs	+						<u></u>		L
Aroclor 1254	6 00E+00	2 22E-07	1 33E-06	2 00E-05	6 65E-02	9 50E-08	5 70E-07	2.00E+00	1 14E-06
Semivolatile Organics	3 3 3 2 3 3								
2-Methylnaphthalene	2 80E-01	2 22E-07	6.21E-08	3 00E-02	2 07E-06	9 50E-08	2 66E-08		
Acenaphthene	2 00E+00	2 22E-07	4 43E-07	6 00E-02	7 39E-06	9 50E-08	1 90E-07	<u> </u>	
Anthracene	3 20E+00	2 22E-07	7 09E-07	3 00E-01	2 36E-06	9 50E-08	3 04E-07		<u> </u>
Benzo(a)anthracene	9 90E+00	2 22E-07	2 19E-06			9 50E-08	9 40E-07	7 30E-01	6 86E-07
Benzo(a)pyrene	7 90E+00	2 22E-07	1.75E-06			9.50E-08	7.50E-07	7 30E+00	5.48E-06
Benzo(b)fluoranthene	9 40E+00	2 22E-07	2 08E-06			9 50E-08	8 93E-07	7 30E-01	6 52E-07
Benzo(g,h,ı)perylene	3 90E+00	2 22E-07	8 64E-07	3 00E-02	2 88E-05	9 50E-08	3 70E-07		
Benzo(k)fluoranthene	8 30E+00	2 22E-07	1 84E-06			9 50E-08	7 88E-07	7 30E-02	5 75E-08
Butyl benzyl phthalate	4 70E-01	2 22E-07	1 04E-07	2 00E-01	5 21E-07	9 50E-08	4.46E-08		
Chrysene Chrysene	1 20E+01	2 22E-07	2 66E-06			9 50E-08	1 14E-06	7 30E-03	8 32E-09
Di-n-octyl phthalate	6 60E-01	2 22E-07	1 46E-07	2 00E-02	7 31E-06	9 50E-08	6 27E-08		
	3 60E-01	2 22E-07	7 98E-08			9 50E-08	3 42E-08	7 30E+00	2 50E-07
Dibenz(a,h)anthracene Dibenzofuran	1 20E+00	2 22E-07	2 66E-07	4 00E-03	6 65E-05	9 50E-08	1 14E-07		
Fluoranthene	2 70E+01	2 22E-07	5 98E-06	4 00E-02	1 50E-04	9 50E-08	2.56E-06		
	2 20E+00	2 22E-07	4 88E-07	4 00E-02	1 22E-05	9 50E-08	2 09E-07		
Fluorene	4 30E+00	2 22E-07	9 53E-07			9 50E-08	4 08E-07	7 30E-01	2 98E-0
Indeno(1,2,3-cd)pyrene	6 90E-01	2 22E-07	1 53E-07	3 00E-02	5 10E-06	9 50E-08	6 55E-08		
Naphthalene	2 10E+01	2 22E-07	4 65E-06	3 00E-02	1.55E-04	9 50E-08	1 99E-06	I	
Phenanthrene	2 50E+01	2 22E-07	5 54E-06	3 00E-02	1.85E-04	9 50E-08	2 37E-06		
Pyrene	1 30E-01	2 22E-07	2 88E-08	2 00E-02	1 44E-06	9 50E-08	1 23E-08	1 40E-02	1 73E-1
bis(2-Ethylhexyl)phthalate	1 30E-01	L-V/	1 502 50		1				L
Volatile Organics	5 60E-03	2 22E-07	1 24E-09	1.00E-01	1 24E-08	9 50E-08	5 32E-10		
Acetone	1 80E-03	2 22E-07	3 99E-10	6 00E-02	6 65E-09	9 50E-08	1.71E-10	7.50E-03	1 28E-1
Methylene chloride	1 1 SUE-03	1		IAZARD INDEX			TOT	AL CANCER RISK	= 8 78E-0

NTE No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation HIF = {[(SAc x EFc x EDc x ABS) / BWc + (SAa x EFa x EDa x ABS) / BWa] x CF} / (AT1 x AT2)

CDI = CS x AF x HIF Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CS = Concentration in Sediments

SAc = Child Skin Surface Area Available for Contact = 6,500 cm²

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

SAa = Adult Skin Surface Area Available for Contact = 2,800 cm²

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 9 years

BW = AdultBody Weight = 57.1 kg

AF = Adherence Factor = 1.0% for organics and 0.1% for inorganics

ABS = Absorption Factor = 0.2

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

CF = Conversion Factor = 0.000001 kg/mg

SF = Slope Factor

RfD = Reference Dose

	CS	NON-CANCER HIF	NON-CANCER CDI	RM	HAZARD OUOTIENT	CANCER HIF	CANCER CDI	SF	CANCER RISK
THEMICALS	1 - 1		(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy) ⁻¹	(unitless)
F CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-uy)	(mg/kg-uj)	\ <u>\u00e4</u>	\ <u> </u>			
Metals			1.405.00	4.00E-04	4 20E-06	4.31E-10	3 36E-10		
intimony	3 90E+00	2.16E-09	1.68E-09	5 00E-03	2 24E-08	4 31E-10	2.24E-11	4.30E+00	9 64E-11
Beryilium	2 60E-01	2 16E-09	1 12E-10	1.00E-03	3.10E-06	4 31E-10	6 21E-10		
admium	7 20E+00	2 16E-09	3 10E-09	5 00E-03	1.98E-07	4.31E-10	1 98E-10		
hromium (VI)	2 30E+00	2 16E-09	9 92E-10		4 89E-08	4 31E-10	5 86E-10		
Cobalt	6 80E+00	2 16E-09	2 93E-09	6 00E-02	4 89E-08	431E-10	6 47E-09	NTF	
ead	7 50E+01	2 16E-09	3 23E-08	NTF	1 995 09	4 31E-10	2.33E-12		
Mercury	2 70E-02	2 16E-09	1 16E-11	3 00E-04	3 88E-08	4 31E-10	6 29E-10		
ilver	7 30E+00	2 16E-09	3 15E-09	5 00E-03	6 29E-07	4 31E-10	1 29E-09		
vanadium	1 50E+01	2 16E-09	6 47E-09	7 00E-03	9 24E-07	4 3 IE-10	1 296-09		
Pesticides/PCBs					1	4 31E-09	1 98E-09	1.00E+00	1 98E-09
Arocior 1254	2 30E+00	2 16E-08	9 92E-09	2.00E-05	4.96E-04	4 3 1E-09	1985-09	1.002.100	1 702 07
Semivolatile Organics						215.00	1 90E-10		
-Methylnaphthalene	2 20E-01	2 16E-08	9 48E-10	3 00E-02	3 16E-08	4.31E-09			
Acenaphthene	6 50E-01	2 16E-08	2 80E-09	6 00E-02	4 67E-08	4 31E-09	5 60E-10		
Anthracene	9 50E-01	2 16E-08	4 10E-09	3 00E-01	1 37E-08	4 31E-09	8.19E-10	2305.01	1 64E-09
Benzo(a)anthracene	2 60E+00	2.16E-08	1 12E-08		1	4.31E-09	2.24E-09	7 30E-01	1 32E-08
Benzo(a)pyrene	2 10E+00	2 16E-08	9 05E-09			4 31E-09	1 81E-09	7 30E+00	1 51E-09
Benzo(b)fluoranthene	2 40E+00	2 16E-08	1 03E-08		l	4 31E-09	2.07E-09	7 30E-01	1312-09
Benzo(g,h,i)perylene	1.00E+00	2 16E-08	4 31E-09	3 00E-02	1 44E-07	4 31E-09	8 62E-10		138E-10
Benzo(k)fluoranthene	2 20E+00	2 16E-08	9 48E-09			4 31E-09	1 90E-09	7 30E-02	1 38E-10
Butyl benzyl phthalate	2 70E-01	2 16E-08	1 16E-09	2 00E-01	5 82E-09	4 31E-09	2.33E-10		1 95E-11
Chrysene	3 10E+00	2 16E-08	1 34E-08			4 31E-09	2 67E-09	7 30E-03	1 93E-11
Di-n-octyl phthalate	3 10E-01	2 16E-08	1 34E-09	2 00E-02	6 68E-08	4 31E-09	2 67E-10		1.000
	2 40E-01	2 16E-08	1 03E-09			4 31E-09	2 07E-10	7 30E+00	151E-09
Dibenz(a,h)anthracene	4 50E-01	2 16E-08	1 94E-09	4 00E-03	4 85E-07	4 31E-09	3 88E-10		
Dibenzofuran	6 90E+00	2 16E-08	2 97E-08	4 00E-02	7 44E-07	4 31E-09	5 95E-09		1
Fluoranthene	7 00E-01	2 16E-08	3 02E-09	4 00E-02	7 54E-08	4 31E-09	6 04E-10		
Fluorene	1 10E+00	2 16E-08	4 74E-09			4 31E-09	9 48E-10	7 30E-01	6 92E-1
Indeno(1,2,3-cd)pyrene	3 20E-01	2 16E-08	1 38E-09	3 00E-02	4 60E-08	4 31E-09	2.76E-10		
Naphthalene		2 16E-08	2 33E-08	3 00E-02	7 76E-07	4 31E-09	4 66E-09		
Phenanthrene	5 40E+00	2 16E-08	2 76E-08	3 00E-02	9 20E-07	4 31E-09	5 52E-09		
Pyrene	5 40E+00	2 16E-08	5 60E-10	2 00E-02	2 80E-08	4 31E-09	1 12E-10	1 40E-02	1 57E-1
bis(2-Ethylhexyl)phthalate	1 30E-01	2 10E-08	2 00E-10	1 - 5002 02					
Volatile Organics		3145 08	2.41E-11	1.00E-01	2 41E-10	4 31E-09	4 83E-12		
Acetone	5 60E-03	2 16E-08 2 16E-08	7.76E-12	6 00E-02		4 31E-09	1 55E-12	7 50E-03	1 16E-
Methylene chloride	1 80E-03	1 2 106-08		AZARD INDEX			TOT	L CANCER RISK	- 2.08E-

NTF - No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - OFF-BASE WEST SOLDIER CREEK (AREA 2) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation HIF = {[(SAc x EFc x EDc x ABS) / BWc + (SAa x EFa x EDa x ABS) / BWa] x CF} / (AT1 x AT2)

 $CDI = CS \times AF \times HIF$ Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

HIF = Human Intake Factor Where:

CDI = Chronic Daily Intake

CS = Concentration in Sediments

SAc = Child Skin Surface Area Available for Contact = 6,500 cm²

EFc = Child Exposure Frequency = 34 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

SAa = Adult Skin Surface Area Available for Contact = 8,600 cm²

EFa = Adult Exposure Frequency = 4 days per year

EDa = Adult Exposure Duration = 25 years

BW = AdultBody Weight = 57.1 kg

AF = Adherence Factor = 1.0% for organics and 0.1% for inorganics

ABS = Absorption Factor = 1.0

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

CF = Conversion Factor = 0.000001 kg/mg

SF = Slope Factor

RfD = Reference Dose

		NON-CANCER	NON-CANCER CDI	RſD	HAZARD OUOTIENT	CANCER HIF	CANCER CDI	SF	CANCER RISK
HEMICALS	CS	HIF	1		(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
F CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(dinters)	(
Metals				4 00E-04	8 87E-05	3 45E-09	1.52E-08		
numony	4 40E+00	8 06E-09	3.55E-08	5 00E-03	8 22E-07	3 45E-09	1 76E-09	4 30E+00	7 58E-09
Beryllium	5 10E-01	8 06E-09	4.11E-09	1 00E-03	1 37E-04	3 45E-09	5 87E-08		
admium	1 70E+01	8 06E-09	1 37E-07		1.35E-05	3 45E-09	2 90E-08		
hromium (VI)	8 40E+00	8 06E-09	6 77E-08	5 00E-03	9 81E-07	3 45E-09	2.52E-08		
obalt	7 30E+00	8 06E-09	5 89E-08	6 00E-02	981E-07	3 45E-09	8 64E-07	NTF	
cad	2 50E+02	8 06E-09	2.02E-06	NTF	1.48E-06	3 45E-09	1 90E-10		1
Mercury	5 50E-02	8 06E-09	4 43E-10	3 00E-04	2.58E-05	3 45E-09	5 53E-08		
Silver	1 60E+01	8 06E-09	1 29E-07	5 00E-03	2.58E-05	3 45E-09	7 95E-08		—
Vanadium	2 30E+01	8 06E-09	1 85E-07	7 00E-03	2 65E-03	3 432-07	7 752 00		1
Pesticides/PCBs					1 105 00	3 45E-08	2 07E-07	2.00E+00	4 15E-07
Aroclor 1254	6 00E+00	8 06E-08	4 84E-07	2 00E-05	2.42E-02	3 43E-08	2012-01	1 2002 00	+
Semivolatile Organics			1		- 125 02	3 45E-08	9 67E-09	ļ	+
2-Methylnaphthalene	2 80E-01	8 06E-08	2 26E-08	3 00E-02	7 52E-07	3 45E-08	6 91E-08	 	
Acenaphthene	2.00E+00	8 06E-08	1 61E-07	6 00E-02	2.69E-06	3.45E-08	1 11E-07	 	+
Anthracene	3 20E+00	8 06E-08	2.58E-07	3 00E-01	8.60E-07	3 45E-08	3.42E-07	7 30E-01	2.50E-0
Benzo(a)anthracene	9 90E+00	8 06E-08	7 98E-07			3 45E-08	2.73E-07	7 30E+00	1.99E-0
Benzo(a)pyrene	7 90E+00	8 06E-08	6 37E-07			3 45E-08	3.25E-07	7 30E-01	2.37E-0
Benzo(b)fluoranthene	9 40E+00	8 06E-08	7 58E-07			3.45E-08	1 35E-07	7 30E-01	+
Benzo(g,h,i)perylene	3 90E+00	8 06E-08	3 14E-07	3 00E-02	1 05E-05		2 87E-07	7 30E-02	2 09E-0
Benzo(k)fluoranthene	8 30E+00	8 06E-08	6 69E-07			3 45E-08	1 62E-08	7 30E-02	+ 2.072
Butyl benzyl phthalate	4 70E-01	8 06E-08	3 79E-08	2 00E-01	1 89E-07	3 45E-08	4 15E-07	7 30E-03	3 03E-0
Chrysene	1 20E+01	8 06E-08	9 67E-07		 	3 45E-08	2 28E-08	7 300-03	+ 3 3 3 2 4
Di-n-octyl phthalate	6 60E-01	8 06E-08	5 32E-08	2.00E-02	2 66E-06	3 45E-08 3 45E-08	1 24E-08	7 30E+00	9 08E-0
Dibenz(a,h)anthracene	3 60E-01	8 06E-08	2 90E-08				4 15E-08	7 302 00	+ , , , ,
Dibenzofuran	1 20E+00	8 06E-08	9 67E-08	4.00E-03	2 42E-05	3 45E-08	9 33E-07		
Fluoranthene	2.70E+01	8 06E-08	2 18E-06	4 00E-02	5 44E-05	3 45E-08	7 60E-08		
Fluorene	2 20E+00	8 06E-08	1 77E-07	4 00E-02	4 43E-06	3 45E-08		7 30E-01	1.08E-0
Indeno(1,2,3-cd)pyrene	4 30E+00	8 06E-08	3 47E-07			3 45E-08	1 49E-07	, 30E-01	- 1000
	6 90E-01	8 06E-08	5 56E-08	3 00E-02	1 85E-06	3 45E-08	2.38E-08	+	
Naphthalene	2 10E+01	8 06E-08	1 69E-06	3 00E-02		3 45E-08	7 26E-07		
Phenanthrene	2 50E+01	8 06E-08	2.02E-06	3 00E-02		3 45E-08	8 64E-07	1 40E-02	6 29E-
Pyrene	1 30E-01	8 06E-08	1 05E-08	2.00E-02	5 24E-07	3 45E-08	4 49E-09	1 40E-02	0 29E-
bis(2-Ethylhexyl)phthalate	1 702 01	 							
Volatile Organics	5 60E-03	8 06E-08	4.51E-10	1 00E-01		3 45E-08	1 93E-10	7 50E-03	4 66E-
Acetone Methylene chloride	1 80E-03	8 06E-08	1.45E-10	6 00E-02	2 42E-09	3 45E-08	6 22E-11	L CANCER RIS	

NTF - No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

AREA 3 ON-BASE EAST SOLDIER CREEK

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) INGESTION EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: CDI = (CW X IR X ET X EF X ED)/ (BW X AT1 X AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water
IR = Ingestion Rate = 0.0025 L/hour
ET = Exposure Time = 4 hours per day
EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 5 years for

effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Antimony	2.50E-04	9.78E-11	4.00E-04	2.45E-07	6.99E-12		
Arsenic	2.50E-03	9.78E-10	3.00E-04	3.26E-06	6.99E-11	1.50E+00	1.05E-10
Cadmium	1.40E-03	5.48E-10	5.00E-04	1.10E-06	3.91E-11		
Cobalt	3.40E-04	1.33E-10	6.00E-02	2.22E-09	9.51E-12		
Nickel	8.50E-03	3.33E-09	2.00E-02	1.66E-07	2.38E-10		
Silver	3.80E-04	1.49E-10	5.00E-03	2.97E-08	1.06E-11		
Vanadium	1.30E-02	5.09E-09	7.00E-03	7.27E-07	3.63E-10		
Pesticides/PCBs						778001	
Aroclor 1254	4.90E-04	1.92E-10	2.00E-05	9.59E-06	1.37E-11	1.00E+00	1.37E-11
Semivolatile Organics							
bis(2-Ethylhexyl)phthalate	5.10E-03	2.00E-09	2.00E-02	9.98E-08	1.43E-10	1.40E-02	2.00E-12
Volatile Organics							
Acetone	5.30E-03	2.07E-09	1.00E-01	2.07E-08	1.48E-10		
Bromoform	1.60E-03	6.26E-10	2.00E-02	3.13E-08	4.47E-11	7.90E-03	3.53E-13
Dibromochloromethane	1.80E-03	7.05E-10	2.00E-02	3.52E-08	5.03E-11	8.40E-02	4.23E-12
Ethanol	4.10E-02	1.60E-08	NTF		1.15E-09	NTF	
Methylene chloride	1.30E-03	5.09E-10	6.00E-02	8.48E-09	3.63E-11	7.50E-03	2.73E-13

HAZARD INDEX= 1.53E-05

TOTAL CANCER RISK=

1.25E-10

NTF = No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) INGESTION EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - RME (CURRENT AND FUTURE USE SCENARIO)

Equation: CDI = (CW X IR X ET X EF X ED)/ (BW X AT1 X AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water IR = Ingestion Rate = 0.005 L/hour ET = Exposure Time = 8 hours/day

EF = Exposure Frequency = 5 days per year

ED = **Exposure Duration** = 25 years

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 25 years for effects

other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals							
Antimony	2.50E-04	1.96E-09	4.00E-04	4.89E-06	6.99E-10		
Arsenic	2.50E-03	1.96E-08	3.00E-04	6.52E-05	6.99E-09	1.50E+00	1.05E-08
Cadmium	3.30E-03	2.58E-08	5.00E-04	5.17E-05	9.23E-09		
Cobalt	4.80E-04	3.76E-09	6.00E-02	6.26E-08	1.34E-09		
Nickel	1.30E-02	1.02E-07	2.00E-02	5.09E-06	3.63E-08		
Silver	4.70E-04	3.68E-09	5.00E-03	7.36E-07	1.31E-09		
Vanadium	1.40E-02	1.10E-07	7.00E-03	1.57E-05	3.91E-08		
Pesticides/PCBs			1				
Aroclor 1254	5.00E-04	3.91E-09	2.00E-05	1.96E-04	1.40E-09	2.00E+00	2.80E-09
Semivolatile Organics							
bis(2-Ethylhexyl)phthalate	5.70E-03	4.46E-08	2.00E-02	2.23E-06	1.59E-08	1.40E-02	2.23E-10
Volatile Organics							
Acetone	6.10E-03	4.77E-08	1.00E-01	4.77E-07	1.71E-08		
Bromoform	1.60E-03	1.25E-08	2.00E-02	6.26E-07	4.47E-09	7.90E-03	3.53E-11
Dibromochloromethane	1.80E-03	1.41E-08	2.00E-02	7.05E-07	5.03E-09	8.40E-02	4.23E-10
Ethanol	4.10E-02	3.21E-07	NTF		1.15E-07	NTF	A
Methylene chloride	1.30E-03	1.02E-08	6.00E-02	1.70E-07	3.63E-09	7.50E-03	2.73E-11
			7 + DD D (DEV	2 125 21		l a Name Profit	1 405 00

HAZARD INDEX= 3.43E-04

TOTAL CANCER RISK= 1.40E-08

NTF = No critical toxicity values surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIOS)

Equation: CDI = (CW x SA x PC x ET x EF x ED x CF)/(BW x AT1 x AT2)

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water

SA = Skin Surface Area Available for Contact = 2,000 cm² PC = Chemical-specific Dermal Permeability Constant

ET = Exposure Time = 4 hours per day EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years

CF = Volumetric Conversion Factor for Water = 0.001 L/cm³

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

	T		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	PC*	CDI	RnD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(cm/hr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals	Ţ			ĺ				
Antimony	2.50E-04	0 001	7 83E-1!	4.00E-04	1.96E-07	5.59E-12		
Arsenic	2.50E-03	0.001	7.83E-10	3 00E-04	2.61E-06	5.59E-11	1.50E+00	8.39E-11
Cadmium	1.40E-03	0 001	4.38E-10	5.00E-04	8.77E-07	3.13E-11		
Cobalt	3 40E-04	0.001	1 06E-10	6.00E-02	1.77E-09	7.60E-12		
Nickel	8 50E-03	0 001	2.66E-09	2 00E-02	1.33E-07	1.90E-10		
Silver	3 80E-04	0 001	1.19E-10	5.00E-03	2.38E-08	8.50E-12		
Vanadium	1 30E-02	0 001	4 07E-09	7 00E-03	5 81E-07	2.91E-10		
Pesticides/PCBs								
Aroclor 1254	4 90E-04	0.032	4 91E-09	2.00E-05	2.45E-04	3.51E-10	1.00E+00	3.51E-10
Semivolatile Organics								
bis(2-Ethylhexyl)phthalate	5 10E-03	0.032	5 11E-08	2 00E-02	2 55E-06	3.65E-09	1 40E-02	5 11E-11
Volatile Organics								
Acetone	5 30E-03							
Bromoform	1 60E-03							
Dibromochloromethane	1 80E-03							
Ethanol	4 10E-02							
Methylene chloride	1 30E-03							

HAZARD INDEX=

2 52E-04

TOTAL CANCER RISK=

4 86E-10

Note

a Due to the volatility, volatile organics are assumed not available for dermal absorption.

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER ON-BASE CONSTRUCTION WORKER - RME (CURRENT AND FUTURE USE SCENARIOS)

Equation: $CDI = (CW \times SA \times PC \times ET \times EF \times ED \times CF)/(BW \times AT1 \times AT2)$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: CDI = Chronic Daily Intake

CW = Concentration in Surface Water

SA = Skin Surface Area Available for Contact =9,800 cm² PC = Chemical-specific Dermal Permeability Constant

ET = Exposure Time = 8 hours per day EF = Exposure Frequency = 5 days per year

ED = Exposure Duration = 25 years

CF = Volumetric Conversion Factor for Water = 0.001 L/cm³

BW = Body Weight = 70 kg AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor RfD = Reference Dose

	1		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CW	PC ^a	CDI	RfD	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/L)	(cm/hr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(1
Antimony	2.50E-04	0.001	3.84E-09	4.00E-04	9.59E-06	1.37E-09		
Arsenic	2.50E-03	0.001	3.84E-08	3.00E-04	1.28E-04	1.37E-08	1.50E+00	2.05E-08
Cadmium	3.30E-03	0.001	5.06E-08	5.00E-04	1.01E-04	1.81E-08		1 2 3 3 3
Cobalt	4.80E-04	0.001	7.36E-09	6.00E-02	1.23E-07	2.63E-09		
Nickel	1.30E-02	0.001	1.99E-07	2.00E-02	9.97E-06	7.12E-08		
Silver	4.70E-04	0.001	7.21E-09	5.00E-03	1.44E-06	2.58E-09		
Vanadium	1.40E-02	0.001	2.15E-07	7.00E-03	3.07E-05	7.67E-08		†
Pesticides/PCBs								
Aroclor 1254	5.00E-04	0.032	2.45E-07	2.00E-05	1.23E-02	8.77E-08	2.00E+00	1.75E-07
Semivolatile Organics							2.002.00	1.752 07
bis(2-Ethylhexyl)phthalate	5.70E-03	0.032	2.80E-06	2.00E-02	1.40E-04	9.99E-07	1.40E-02	1.40E-08
Volatile Organics						***************************************	1.102.02	1.402.00
Acetone	6.10E-03							<u> </u>
Bromoform	1.60E-03							
Dibromochloromethane	1.80E-03		***************************************					
Ethanol	4.10E-02					<u> </u>		-
Methylene chloride	1 30E-03					<u> </u>		

HAZARD INDEX =

1.27E-02

TOTAL CANCER RISK = 2.10E-07

Note

a Due to the volatility, volatile organics are assumed not available for dermal absorption

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT USE SCENARIO)

Equation CDI = (CS x CF x SA x AF x ABS x EF x ED)/(BW x AT1 x AT2)
Hazard Quotient = CDI / R/D
Cancer Risk = CDI x Slope Factor

CDI = Chronic Daily Intake CS = Concentration in Sediments

CF = Conversion Factor (10 * kg/mg)

SA = Skin Surface Area Available for Contact = 2,000 cm²

SA = Skin Surface Area Available for Contact = 2,000 cm²

AF = Dermal Soil Adherence Factor = 0.2 mg/cm²

ABS = Absorption Factor = 1.0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg

ATJ = Days Per Year = 365 days

AT2 = Averaging Time (*0 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor

RTD = Reference Dose

CHEMICALS	cs	NON-CANCER CDI	R/D	HAZARD QUOTIENT	CANCER CDI	SP	CANCER
OF CONCERN	(mg/kg)	(mg/kg-dy)				٠.	
Metals	(40,000	(mg/ng-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Antimony	4 90E+00	7.67E-11	4 00E-04	1 92E-07	5 48E-12		
Beryllium	4 90E-01	7 67E-12	5.00E-03	1 53E-09	5 48E-12	4 30E+00	
Cadmium	6.20E+01	9 71E-10	1 00E-03	9.71E-07	6.93E-11	4 30E HAU	2.36E-12
Thromium	4 90E+02	7 67E-09	5 00E-03	1 53E-06	5.48E-10		
obalt	1.50E+01	2.35E-10	6.00E-02	3 91E-09	1 68E-11		
_cad	1.70E+02	2 66E-09	NTF	3 71E-07	1 90E-10	NIF	
Mercury	1.10E+00	1 72E-11	3.00E-04	5 74E-08	1 23E-12	NIF	
Silver	4 70E+00	7 36E-11	5 00E-03	1 47E-08	5 26E-12		
Thailium	7 30E+01	1 14E-09	8 00E-05	1 43E-05	8 16E-11		
Vanadium	2 90E+01	4 54E-10	7 00E-03	6 49E-08	3 24E-11		
PCBs/Pesticides	1		- G/E 07	3 472-78	7 44E-11		
L4'-DDD	4 20E-02	6 58E-12			4 70E-13	2 40E-01	1 13E-13
Aldrin	3 50E-02	5 48E-12	3 00E-05	1 83E-07	3 91E-13	1.70E+01	6.65E-12
Arociar 1254	1.50E+00	2.35E-10	2.00E-05	1 17E-05	1.68E-11	1.00E+00	1.68E-11
Aroclor 1260	6 30E-01	9 86E-11	2.002,473	11/2-03	7.05E-12	1.00E+00	7 05E-12
ndosulfan II	6 50E-02	1 02E-11	6.00E-03	1 70E-09	7 27E-13	1 00/2100	7 USE-12
ipha-Chiordane	1 30E-02	2 04E-12	6.00E-05	3 39E-08	1 45E-13	1 30E+00	1 89E-13
amma-Chlordane	2.30E-02	3 60E-12	6.00E-05	6.00E-08	2.57E-13	1 30E+00	3 34E-13
Semivolatile Organics	1	, 000-12	0.002,-00	0.00E-08	2.3/E-13	1 302 400	3 34E-13
2-Dichlorobenzene	2 20E-01	3 44E-11	9.00E-02	3 83E-10	2 46E-12		
4-Dichlorobenzene	1.30E-01	2 04E-11	7 OOL -02	3 435-10	1 45E-12	2.40E-02	3 49E-14
-Chioronaphthalene	1 60E-01	2 50E-11	3 00E-02	8 35E-10	1 79E-12	2.406.402) 49E-14
.4-Dimethylphenol	6 40E-02	1 00E-11	2.00E-02	5 01E-10	7 16E-13		
-Chloronaphthalene	5 00E-01	7 83E-11	8 00E-02	9 78E-10	5 59E-12		
-Methylnaphthalene	4.70E-01	7 36E-11	3 00E-02	2 45E-09	5 26E-12		
-Methylcholanthrene	2 50E-01	3 91E-11	NTF	2435.407	2 80E-12	NTF	
Acenaphthene	8.10E-01	1 27E-10	6 00E-02	2.11E-09	9 06E-12	NIF	
Acetophenone	1 10E-01	1.72E-11	1 00E-01	1 72E-10	1 23E-12		
Anthracene	1 20E+00	1 88E-10	3 00E-01	6 26E-10	1 34E-11		
Benzo(a)anthracene	2 90E+00	4 54E-10	7.002-01	0.202-10	3 24E-11	7 30E-01	2 37E-11
Benzo(a)pyrene	3 20E+00	5 01E-10			3 58E-11	7 30E+00	
Benzo(b)fluoranthene	3 80E+00	5 95E-10			4 25E-11	7 30E-01	2.61E-10
Benzo(g,h.i)perylene	1.60E+00	2 50E-10	3 00E-02	8 35E-09	1 79E-11	/30E-01	3 10E-11
Benzo(k)fluoranthene	3 00E+00	4 70E-10	7.002-02	8 33E-09		2 105 00	
Senzoic acid	2 80E-01	4 38E-11	4 00E+00	1 10E-11	3 35E-11 3 13E-12	7 30E-02	2 45E-12
Butyl benzyl phthaiate	5 10E-01	7 98E-11	2 00E-01	3 99E-10	5 70E-12		
hrysene	4 00E+00	6 26E-10	2 00/2-4/1) 99E-10		2.000	
Di-n-butyl phthalate	6 80E-02	1.06E-11	1.00E-01	1 06E-10	4 47E-11	7 30E-03	3 27E-13
Dibenzia h)anthracene	7 80E-01	1 22E-10	100/2-01	1 06E-10	7 60E-13		
Dibenzofuran	6 70E-01	1 05E-10	4 00E-03	1415.09	8 72E-12	7 30E+00	6 37E-11
Tuoranthene	9 80E+00	1 53E-09	4 00E-03	2 62E-08 3 84E-08	7 49E-12		
luorene	7 70E-01	1 21E-10	4 00E-02	3 01E-09	1 10E-10 8 61E-12		
ndeno(1,2,3-cd)pyrene	1.70E+00	2 66E-10	+ U/E-0/2) UIE-IN	8 61E-12 1 90E-11	7 30E-01	1.225
Naphthalene	9 40E-01	1 47E-10	3 00E-02	4.91E-09		/ 30E-01	1 39E-11
henanthrene	5.90E+00	9 24E-10	3 00E-02	3 08E-08	1 05E-11 5 60E-11		
· rene	6 20E +00	9.71E-10	1 00E-02	3 24E-08	5 60E-11		
ois(2-Ethylhexyl)phthalate	2 80E+00	4 38E-10	2 00E-02	2 19E-08	5 93E-11	1 40E-02	
Volatile Organics	2 30/2 - 50/	* 70L*10	- IA/E-1/2	£ 17E-1/6	1135-11	1 40E-02	4 38E-13
1.2.2-Tetrachloroethane	2 70E-03	4 23E-13	 		3 02E-14	2 00E-01	(a) F
I-Dichloroethane	1 60E-03	2.50E-13	1 00E-01	2 50E-12	3 02E-14 1 79E-14	2 ONE-01	6 04E-15
-Butanone (MEK)	1 40E-02	2 19E-12	6 00E-01	3 65E-12	1 /9E-14 1 57E-13		
Acetone	5 80E-02	9 08E-12	1 00E-01	9 08E-11	6 49E-13		
Banzane	5 40E-03	8 45E-13	1006-01	9 08E-11	6 49E-13	2 90E-02	
arbon disulfide	5 80E-03	9.08E-13	1.00E-01	9 08E-12		2 90E-02	1.75E-1:
Thiorobenzene	1 30E-01	2 04E-11	2 00E-02		6 49E-14		
hioromethane	1 20E-02	1 88E-12	2 OUE-02	1 02E-09	1 45E-12		
thylbenzene	6 10E-03	9 55E-13	I I WE OF	0.665.15	1 34E-13	1.30E-02	1.74E-1
Methylene chlonde	5 (0E-0)3		1.00E-01	9 55E-12	6 82E-14	ļ	
		7 83E-13	5 (X)E =12	1.40E-11	5 59E-14	* 50E-03	4 19E-16
Styrene Enchloroethene	8 10E=03 1 90E=03	1 27E-12	2 00E-01	6 34E-12	9.06E-14		
TEMOTOCUICIE	1 FAVE 473	2.9°E-13	6 DOE=03	4 %6E-11	2 12E-14	1.10E-02	2.34E-16

NTE - No critical toxicity values - surrogate toxicity values are not invaliable for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (CURRENT USE SCENARIO)

Equation CDI = (CS 1 CF 1 SA 1 AF 1 ABS 1 EF 1 EDV(BW 1 ATT 1 ATT)

Hzzard Quotient = CDI 1 RID

Cancer Risk = CDI 1 Slope Factor

CDI - Chronic Daily Intake Where:

CS = Concentration in Sediments CF = Conversion Factor (10 kg/mg)

CF = Conversion Factor (10* kg/mg)
SA = Skin Surface Area Available for Contact = 9,800 cm³
AF = Dermal Soil Adherence Factor = 1.0 mg/cm³
ABS = Absorption Factor = 1.0% for organics and 0.1% for inorganics
EF = Exposure Frequency = 5 days per year
ED = Exposure Prequency = 5 days per year
BW = Body Weight = 70 kg
AT1 = Days Per Year = 345 days

ATT = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor

R/D = Reference Dose

CHARLETT		NON-CANCER	l	HAZARD	CANCER		CANCER
CHEMICALS	cs	CDI	RM	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitiess)
Metals							
Anumony	5 60E+00	1 07E-08	4 00E-04	2 68E-05	3.84E-09		
Beryllium	7 40E-01	1 42E-09	5 00E-03	2 84E-07	5.07E-10	4 30E+00	2.18E-09
admium	8 37E+02	1 61E-06	1 00E-03	1 61E-03	5 73E-07		
Thromium	1 80E+03	3 45E-06	5 00E-03	6 90E-04	1 23E-06		
Cobalt	2 20E+01	4 22E-08	6 00E-02	7 03E-07	1.51E-08		
.cad	5 28E+02	1 01E-06	NTF		3 62E-07	NTF	
Mercury	3 50E+00	6.71E-09	3 00E-04	2 24E-05	2.40E-09		
Silver	1 30E+01	2 49E⊣)8	5 00E-03	4 99E-06	8.90E-09		
Phallium	7 30E+01	1 40E-07	8 00E-05	1 75E-03	5 00E-08		
√anadium	3 70E+01	7 10E-08	7 00E-03	1 01E-05	2.53E-08		
PCBs/Pesticides						Î	
+-DDD	4 20E-02	8 05E-10			2 88E-10	2.40E-01	6 90E-11
Aldrin	9 70E-02	1 86E-09	3 00E-05	6 20E-05	6 64E-10	1.70E+01	1.13E-08
Arocior 1254	1.00E+01	1 92E-07	2 00E-05	9 59E-03	6.85E-08	2 00E+00	1.37E-07
Arocior 1260	6 80E-01	1 30E-08			4 66E-09	2 00E+00	9 32E-09
ndosulfan II	9 30E-02	1 78E-09	6 00E-03	2 97E-07	6.37E-10		
upha-Chlordane	1 30E-02	2 49E-10	6 00E-05	4 16E-06	8 90E-11	1 30E+00	1 16E-10
zamma-Chlordane	2.30E-02	4 41E-10	6 00E-05	7 35E-06	1.58E-10	1 30E+00	2.05E-10
Semivolatile Organics	1						
.2-Dichlorobenzene	2 20E-01	4 22E-09	9 00E-02	4 69E-08	1.51E-09		
.4-Dichlorobenzene	1.30E-01	2.49E-09			8 90E-10	2 40E-02	2.14E-11
-Chloronaphthalene	1 60E-01	3 07E-09	3 00E-02	1 02E-07	1 10E-09		
2,4-Dimethytphenol	6 40E-02	1 23E-09	2.00E-02	6 14E-08	4 38E-10		
2-Chioronaphthalene	5 00E-01	9 59E-09	8 00E-02	1 20E-07	3 42E-09		
2-Methylnaphthalene	4 70E-01	9 01E-09	3 00E-02	1 00E-07	3 22E-09		•
-Methylcholanthrene	2 50E-01	4 "9E-09	NIF		1.71E-09	NTF	
Accraphthene	1.80E+00	3.45E-08	6 00E-02	5 75E-07	1 23E-08		
Acetophenone	1.10E-01	2 11E-09	1.00E-01	2 11E-08	7.53E-10		
Anthracene	4 (X)E +(X)	7.67E-08	3 00E-01	2.56E-07	2.74E-08		
Benzo(a)anthracene	9.10E+00	1.75E-07			6 23E-08	7 30E-01	4 55E-08
Вспиона хругене	1.10E+01	2 11E-07			7 53E-08	7.30E+00	5 50E-07
Benzo(b)fluoranthene	130E+01	2 49E-07			8 90E-08	7.30E-01	6 50E-08
Banzo(g,h.i)perylene	4 50E+00	8 63E-08	3 (XXE-4)2	2 88E-06	3 08E-08		
Benzo(k)fluoranthene	1.20E+01	2.30E-07			8 22E-08	7 30E-02	6 00E-09
Benzoic acid	2 80E-01	5 37E-09	4 00E+00	1.34E-09	1 92E-09		
Butyl benzyl phthalate	5.10E-01	9 78E-09	2 00E-01	4 89E-08	3 49E-09		
Chrysene	1.20E+01	2 30E-07			8.22E-08	7 30E-03	6 00E-10
Di-n-butyl phthalate	6 80E-02	1 30E-09	1.00E-01	1 30E-08	4 66E-10		***
Dibenz(a,h)anthracene	1.80E+00	3 45E-08			1 23E-08	7.30E+00	9.00E-08
Dibenzofur an	1.50E+00	2 88E-08	4 00E-03	7 19E-06	1 03E-08		
Tuoranthene	3 20E+01	6 14E4)7	4 00E-02	1.53E-05	2 19E-07		
Fluorene	1.70E+00	3 26E-08	4 00E-02	8 15E-07	1 16E-08		
Indenoc1.2.3-cd)pyrene	4 60E+00	8 82E 4)8			3 15E-08	7 30E-01	2 30E-08
Naphthalene	2.10E+00	4 03E⊣08	3 00E=02	1.34E4X6	1 44E-08		
Phenanthrene	1.80E+01	3.45E-4)7	1 00E-02	1.15E-05	1 23E-07		
Pyrene	1.70E+01	1.26E-07	3 00E-02	1.09E-05	1 16E-4)7		
ois(2-Ethylhexyl)phthalate	1 30E+01	2.498-07	2 00E-02	1.25E-05	8 90E-08	1.40E-02	1.25E-09
Volatile Organics	1					1	
1.1.2.2-Tetrachloroethane	2 *0E-03	5 18E-11			1.85E-11	2 00E-01	3.70E-13
1.1-Dichloroethane	1.60E-03	30°E-11	1.00E=01	3 07E-10	1.10E-11		
2-Butanone (MEK)	2.30E-02	4.41E-10	5 00E-01	7 15E-10	1 58E-10		
Acetone	1.50E-01	2 88E-179	1.00E-01	2 88E-08	1 03E-09	t	
Benzene	6.80E-03	1 30E-10	1	1	4 66E-11	2 90E-02	1 35E-1.
Carbon disulfide	* 90E-03	1 52E-10	1-00E-01	1.52E-09	5 4 I E-11	1	1,752-11
Chlorobenzene	1.90E-01	3.64E-09	2 00E-02	1 82E-07	1 30E-09	†	
Chloromethane	: "0E-02	1 26E-10	1		1 16E-10	1.30E-02	1.51E-1.
Ethylbenzene	\$ 10E-03	1.55E-10	100E-01	1.55E⊣)9	5 55E-11	1 7 7 7 7 7	1 71E-1
Methylene chloride	6.50E-03	1.25E-10	5 (XXE-02	2.08E-09	4 45E-11	7 50E-03	3 34E-1
Styrene	1.20E-02	2 30E-10	2 00E-01	1.15E-09	8 22E-11	JOE -93	/ /46-1
Trichiomethene	1.90E403	1.64E-1.1	6 00E-03	5 0 E-09	1.10E-11	1 10E-02	1.43E-1
i i i canoro curcare							

NTE = No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (CURRENT USE SCENARIO)

Equation CDI = (CS x CF x IR x EF x EDV(BW x AT1 x AT2)

Hazard Quotient = CD1 / R/D

Cancer Risk = CD1 x Slope Factor

Where:

CDI = Chronic Daily Intake
CS = Concentration in Sediments

CS = Concentration in Sediments

CF = Conversion Factor (10⁴ kg/mg)

1R = Sediment Ingestion Rate = 10 mg/day

EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg

ATI = Days Per Year = 365 days

ATI = Average Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor

RfD = Reference Dose

CHEMICALS	CS	NON-CANCER CDI	000	HAZARD	CANCER		CANCE
OF CONCERN	(mg/kg)		RrD	QUOTIENT	CDI	SF	RISK
Metals	(IIIg/Rg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitles
Antimony	1.005.00				1		
Beryllium	4 90E+00 4 90E-01	1 92E-09	4 00E-04	4.79E-06	1 37E-10		
admium		1 92E-10	5 00E-03	3 84E-08	1.37E-11	4.30E+00	5 89E-1
Thromum	6 20E+01	2 43E-08	1 00E-03	2.43E-05	1.73E-09		
Cobalt	4 90E+02	1 92E-07	5 00E-03	3 84E-05	1 37E-08		
-cad	1.50E+01	5 87E-09	6 00E-02	9 78E-08	4 19E-10		
Mercury	1 70E+02	6 65E-08	NTF		4 75E-09	NTF	
Silver	1.10E+00	4 31E-10	3 00E-04	1.44E-06	3 08E-11		
Thailium	4 70E+00	1 84E-09	5 00E-03	3.68E-07	1 31E-10		
Vanadium	7.30E+01	2 86E-08	8.00E-05	3 57E-04	2 04E-09		
	2 90E+01	1.14E-08	7 00E-03	1 62E-06	8 11E-10		
PCBs/Pesticides 4'-DDD							
Udrin	4 20E-02	164E-11			1 17E-12	2.40E-01	2 82E-1
	3 50E-02	1 37E-11	3 00E-05	4 57E-07	9 78E-13	1 70E+01	1.66E-1
troclor 1254	1 50E+00	5 87E-10	2 00E-05	2 94E-05	4 19E-11	1.00E+00	4 19E-1
Aroclor 1260	6 30E-01	2 47E-10			1.76E-11	1 00E+00	1.76E-1
ndosulfan II	6 50E-02	2 54E-11	6.00E-03	4 24E-09	1.82E-12	7 005-00	1./0E-1
pha-Chlordane	1 30E-02	5 09E-12	6.00E-05	8 48E-08	3 63E-13	1 30E+00	4 72E-1
amma-Chlordane	2.30E-02	9 00E-12	6 00E-05	1 50E-07	6 43E-13	1.30E+00	8 36E-1
Semivolatile Organics	1				7.72.77		8 JOE-1
2-Dichlorobenzene	2 20E-01	861E-11	9 00E-02	9 57E-10	6.15E-12		
4-Dichlorobenzene	1 30E-01	5 09E-11			3.63E-12	2.40E-02	8.72E-1
-Chloronaphthalene	1 60E-01	6 26E-11	3 00E-02	2 09E-09	4 47E-12	2.400-02	8.72E-14
4-Dimethylphenol	6 40E-02	2 50E-11	2.00E-02	1 25E-09	1 79E-12		
-Chloronaphthaiene	5 00E-01	1 96E-10	8 00E-02	2 45E-09	1 40E-11		
-N. ahvinaphthaiene	4 70E-01	1 84E-10	3 00E-02	6 13E-09	1 31E-11		
-Methylcholanthrene	2 50E-01	9 78E-11	NTF		6 99E-12	NIF	
cenaphthene	8 10E-01	3 17E-10	6 00E-02	5 28E-09	2 26E-11	NIF	
cetophenone	1 10E-01	4 31E-11	1 00E-01	4 31E-10	3 08E-12		
nthracene	1 20E+00	4 TOE-10	3 00E-01	1.57E-09	3 35E-11		
enzo(a)anthracene	2 90E+00	1 14E-09			8 11E-11	7 30E-01	
enzo(a)pyrene	3 20E+00	1.25E-09			8 95E-11	7 30E-01	5 92E-11
enzo(b)fluoranthene	1.80E +00	1 49E-09			1 06E-10	7 30E-01	6 53E-10
enzo(g.h.)perylene	1 60E+00	6 26E-10	3 00E-02	2 09E-08	4 47E-11	7 30E-01	7 76E-11
enzo(k)fluoranthene	3 00E+00	117E-09		2 0 7 2 1 3 9	8 39E-11	7 30E-02	
enzoic acid	2 80E-01	1 10E-10	4 00E+00	2 74E-11	7 83E-12	7 30E-02	6.12E-12
utyl benzyl phthaiate	5 10E-01	2 00E-10	2 00E-01	9 98E-10	1 43E-11		
hrysene	4 00E+00	1.57E-09		, /aE-10	1 12E-10	7.105.01	
i-n-butyl phthalate	6 80E-02	2 66E-11	1 00E-01	2 66E-10	1 90E-12	7 30E-03	8 16E-13
ibenz(a,h)anthracene	7 80E-01	3 05E-10		2 002-10	2 18E-11		
ibenzofuran	6.70E-01	2 62E-10	4 00E-03	6 56E-08		7 30E+00	1 59E-10
uoranthene	9.80E+00	1 84E-09	4 00E-02	9 59E-08	1.87E-11 2.74E-10		
uorene	7 70E-01	3 01E-10	4 00E-02	7.53E-09	2 15E-11		
deno(1.2.3-cd)pyrene	1.70E+00	6 65E-10	. 001, 01	7.7E=77	4 75E-11	7105.01	
aphthalene	9 40E-01	1 68E-10	3 00E-02	1 23E-08	2 63E-11	7 30E-01	3 47E-11
tenanthrene	5 90E+00	2 31E-09	3 00E-02	7 70E-08	1 65E-10		
rene	6 20E+00	2.43E-09	3 00E-02	8 09E-08	1 73E-10		
s(2-Ethylhexyl)phthalate	2.80E+00	1.10E-09	2 DOE-02	5 48E-08	7 83E-11	1 105	
Volatile Organica			2	2 406,478	5)E-11	1 40E-02	1 10E-12
1.2.2-Tetrachloroethane	2.70E-03	1 06E-12			7 55E-14	2005	
1-Dichloroethane	1.60E-03	6.26E-13	1.00E-01	6 26E-12		2 00E-01	1.51E-14
Butanone (MEK)	1 40E-02	5 48E-12	6 00E-01	9 13E-12	4 47E-14		
ctone	5 80E-02	2 27E-11	1.00E-01	2 27E-10	3 91E-13		
anzene	5 40E-03	2 11E-12	(.WE-01	2.27E-10	1 62E-12		
rbon disulfide	5 80E-03	2 27E-12	1 00E-01	2 27E-11	1 51E-13	2 90E-02	4 38E-15
llorobenzene	1 30E-01	5 09E-11	2 OOE-02		1 62E-13		
iloromethane	1.20E-02	4.70E-12	2 (A)E-02	2 54E-09	3 63E-12		
hylbenzene	6 10E-03	2 39E-12	1 00E-01	1105	3 35E-13	1 30E-02	4 36E-15
ethylene chloride	5 00E-03	1.96E-12		2 39E-11	1.71E-13	T	
vrene	8 10E-03	3 17E-12	5 00E-02 2 00E-01	3 26E-11	1 40E-13	7 50E-03	1 05E-15
chioroethene	1.30E-03	7 44E-13		1 59E-11	2 26E-13		
		44 C - 1 1	6-00E-03	1.24E-10	5 31E-14	1 10E-02	5 84E-16

STE + No critical toxicity values, surrogate roscitty values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (CURRENT USE SCENARIO)

Equation CDI = (CS x CF x IR x EF x ED)/(BW x AT1 x AT2)

Hazard Quotient = CDI / RTD

Cancer Risk = CDI x Slope Factor

CDI - Chronic Daily Intake

CS = Concentration in Sediments

CS = Concentration in Sediments

CF = Conversion Factor (10° kg/mg)

IR = Sediment Ingestion Rate = 50 mg/day

EF = Exposure Perquency = 5 days per year

ED = Exposure Duration = 25 years

BW = Body Weight = 70 kg

AT1 = Days Per Year = 345 days

AT2 = Average Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor

RTD = Reference Dose

CHEMICALS	cc.	NON-CANCER		HAZARD	CANCER		CANCER
OF CONCERN	CS	CDI	RM	QUOTIENT	CDI	SF	RISK
Metals	(mg/k+)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Antimony							(111111)
Bervilium	5 60E+00	5 48E-08	4 00E-04	1.37E-04	1 96E-08	† 	
Cadmium	7 40E-01	7 24E-09	5 00E-03	1 45E-06	2.59E-09	4 30E+00	1.11E-08
Chromium	8 37E+02	8 19E-06	1 00E-03	8 19E-03	2 92E-06	1302.00	1.11E-08
Cobalt	1 80E+03	1 76E-05	5 00E-03	3 52E-03	6 29E-06		
Lead	2 20E+01	2 15E-07	6 00E-02	3 59E-06	7 69E-08		
	5 28E+02	5.17E-06	NTF		1 85E-06	NTF	
Mercury	3 50E+00	3 42E-08	3 00E-04	1 14E-04	1.22E-08		
Silver	1 30E+01	1 27E-07	5 00E-03	2 54E-05	4 54E-08		
Thallium	7 30E+01	7 14E-07	8 00E-05	8 93E-03	2.55E-07		
Vanadium	1.70E+01	3 62E-07	7 00E-03	5 17E-05	1 29E-07	·	
PCBs/Pesticides							
4 4'-DDD	4 20E-02	4.11E-10			1 47E-10	2.40E-01	1.625.11
Aldrin	9 70E-02	9 49E-10	3 00E-05	3 16E-05	3 39E-10	1.70E+01	3 52E-11
Aroclor 1254	1 00E+01	9 78E-08	2 00E-05	4 89E-03	3 49E-08	2 00E+00	5 76E-09
Arocker 1260	6 80E-01	6 65E-09			2 38E-09	2 00E+00	6.99E-08 4.75E-09
ndosulfan II	9 30E-02	9 10E-10	6 00E-03	1 52E-07	3.25E-10	2 000 700	4 /3E-09
lipha-Chlordane	L 30E-02	1 27E-10	6 00E-05	2 12E-06	4 54E-11	1 30E+00	\$ 01F 11
amma-Chlordane	2 30E-02	2.25E-10	6 00E-05	3 75E-06	8 04E-11	1 30E+00	5 91E-11 1 04E-10
Semivolatile Organics						1 300,400	1 04E-10
2-Dichlorobenzene	2 20E-01	2.15E-09	9 00E-02	2 39E-08	7 69E-10		
4-Dichlorobenzene	1 30E-01	1.27E-09			4.54E-10	2.40E-02	1.09E-11
-Chloronaphthalene	1 60E-01	1.57E-09	3 00E-02	5.22E-08	5 59E-10	2.406-02	1.09E-11
.4-Dimethylphenol	6 40E-02	6 26E-10	2 00E-02	3 13E-08	2 24E-10		
-Chloronaphthalene	5 00E-01	4 89E-09	8 00E-02	6 12E-08	1.75E-09		
-Methylnaphthalene	4.70E-01	4 60E-09	3 00E-02	1 53E-07	1 64E-09		
-Methylcholanthrene	2.50E-01	2 45E-09	NTF		8.74E-10	NIE	
cenaphthene	1.80E+00	1.76E-08	6 00E-02	2 94E-07	6 29E-09	3115	
cetophenone	1 10E-01	1 08E-09	1.00E-01	1 08E-08	3 84E-10		
inthracene	4 00E+00	3 91E-08	3 00E-01	1 30E-07	1 40E-08		
enzo(a)anthracene	9 10E+00	8 90E-08			3 18E-08	7 30E-01	
enzo(a)pyrene	1.10E+01	1 08E-07			3 84E-08	7 30E+00	2 32E-08
enzo(b)fluoranthene	1.30E+01	1 27E-07			4 54E-08	7 30E-01	2 81E-07
cnzo(g.h.i)perylene	4.50E+00	4 40E-08	3 00E-02	1 47E-06	1.57E-08	/ 30E-01	3 32E-08
enzo(k)fluoranthene	1 20E+01	1.17E-07			4 19E-08	7 30E-02	
enzoic acid	2 80E-01	2.74E499	4 00E+00	6 85E-10	9 78E-10	7 30E-02	3 06E-09
utyl benzyl phthalate	5 10E-01	4 99E-1)9	2 00E-01	2.50E-08	1 78E-09		
hrv sene	1.20E+01	1.17E-07			4 19E-08	7 30E-03	
i-n-buty! phthalate	6 80E-02	6 65E-10	1 00E-01	6 65E-09	2 38E-10	/ 30E-03	3 06E-10
ibenz(a,h)anthracene	1 80E+00	1.76E-08		33,237	6 29E-09	7.105.00	
ibenzofuran	1.50E+00	1.47E-08	4 00E-03	3 67E-06	5 24E-09	7 30E+00	4 59E-08
uoranthene	3 20E+01	3 13E-07	4 00E-02	7 83E-06	1 12E-07		
uorene	1 "0E+00	1 66E-4)8	4 00E-02	4 16E-07	5 94E-09		
deno(1,2,3-cd)pyrene	4 60E+00	4 50E-08		1023//	1 61E-08	7 30E-01	
aphthalene	2 10E+00	2 05E-08	3 00E-02	6 85E-07	7 34E-09	/ 308-01	1.17E-08
nenanthrene	1.80E+01	1.76E-07	3 (JOE-4)2	5 87E-06	6 29E-08		
rene	1.70E+01	1.66E-07	1 00E-02	5 54E-06	5 94E-08		
s(2-Ethylhexyl)phthaiate	1.30E+01	1.27E-07	2 00E-02	6 36E-06	1 54E-08	1.405.00	
Volatile Organics				3 300-30	4 345-78	1 40E-02	6 36E-10
1.2.2-Tetrachloroethane	2 70E-03	2.64E-11			A 115 12	1 105 0	
1-Dichloroethane	1.60E-03	1.57E-11	1 00E=01	1 57E-10	9 44E-12 5 59E-12	2 00E-01	1 89E-12
Butanone (MEK)	2 30E-02	2 25E-10	6 00E-01	3.75E-10	8 04E-11		
etone	1.50E-01	1.47E-09	1 00E-01	1.47E-08	5 24E-10		
avene	6 80E-03	6.65E-11		. 4.2.76	2 38E-11	3.005	
arbon disulfide	7 90E-03	7 73E-11	1.90E-01	7.73E-10	2.76E-11	2 90E-02	6 89E-13
lorobenzene	1.90E=01	1 86E-09	2 00E-02	9 30E-08			
loromethane	1 "0E=02	1 66E-10	- (A/E-4/2	3 30E 408	6 64E-10		
hy lbenzene	8 10E-03	7 93E-11	1 00E-01	*93E-10	5 94E-11	1 30E-02	7 72E-13
ethylene chloride	5 50E-03	6.36E-11	6 00E-02		2 83E-11		
rene	1.20E-02	1.17E-10	2 00E-01	1.06E-09	2.27E-11	7 50E-03	1.70E-13
nchloroethene	1 X0E=03	! 86E-11	5 00E-03	5 87E-10	4 19E-11		
	-	. (804,-) (110E-03	3 10E-09	5.64E-12	1 10E-02	7 30E-14

2 59E-4)2 TOTAL CANCER RISK - 4 90E-07

NTF + No critical foxicity values - summation foxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (FUTURE USE SCENARIO)

Equation CDI = (CS x CF x SA x AF x ABS x EF x EDV(BW x AT1 x AT2)

Hazard Quotient = CDI / RTD

Cancer Risk = CDI x Slope Factor

CDI - Chronic Daily Intake Where:

CS = Concentration in Sediments
CF = Conversion Factor (10 4 kg/mg)

SA = Skin Surface Area Available for Contact = 2,000 cm¹

SA = Skin Surface Area Available for Contact = 2,000 cm³

AF = Dermal Soil Adherence Factor = 0,2 mg/cm³

ABS = Absorption Factor = 1,0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 1 day per year

ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg

AT1 = Days Per Year = 365 days

AT2 = Averaging Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor

RTD = Reference Dose

	1 1	NON-CANCER	1	HAZARD	CANCER		CANCER
CHEMICALS	CS	CDI	RM	QUOTIENT	CDI	SF	n. n k
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitiess)	(mg/kg-dy)	(mg/kg-dy)-1	(unitiess)
Metais							
Antimony	4 90E+00	7 67E-11	4 00E-04	1 92E-07	5 48E-12		
Beryllium	4 50E-01	7 05E-12	5 00E-03	1.41E-09	5 03E-13	4 30E+00	2.16E-12
Cadmium	5 80E+01	9 08E-10	1.00E-03	9 08E-07	6 49E-11		
Chromnum	4 20E+02	6 58E-09	5 00E-03	1 32E-06	4 70E-10		
Cobalt	1 20E+01	1 88E-10	6 00E-02	3 13E-09	1 34E-11		
Lead	1 40E+02	2.19E-09	NTF		1 57E-10	NTF	
Mercury	7.00E-01	1 10E-11	3 00E-04	3 65E-08	7 83E-13		
Vickel	1 30E+02	2.04E-09	2.00E-02	1 02E-07	1 45E-10		
Silver	4 50E+00	7 05E-11	5 00E-03	1 41E-08	5 03E-12		
Thailium	1 30E+02	2.04E-09	8 00E-05	2 54E-05	1.45E-10		
Vanadium	2 50E+01	3.91E-10	7.00E-03	5 59E-08	2.80E-11		
PCBs/Pesticides							
4.4'-DDD	4.20E-02	6.58E-12			4 70E-13	2.40E-01	1 13E-13
Aroclor 1254	1.60E+00	2.50E-10	2.00E-05	1 25E-05	1.79E-11	1 00E+00	1.79E-11
Endosulfan II	7 10E-02	1 11E-11	6 00E-03	1 85E-09	7 94E-13		
gamma-Chlordane	2.30E-02	3 60E-12	6 00E-05	6 00E-08	2 57E-13	1 30E+00	3 34E-13
Semivolatile Organics							
1,2-Dichlorobenzene	2.20E-01	3 44E-11	9 00E-02	3 83E-10	2 46E-12		
1.4-Dichlorobenzene	7 50E-01	1.17E-10			8.39E-12	2.40E-02	2.01E-13
1-Chloronaphthaiene	2 30E-01	3 60E-11	3 00E-02	1 20E-09	2 57E-12		
2-Chloronaphthalene	5 00E-01	7 83E-11	8 00E-02	9 78E-10	5 59E-12		
2-Methylnaphthalene	7 70E-01	1 21E-10	3.00E-02	4 02E-09	8 61E-12		
Acenaphthene	6 50E-01	1 02E-10	6 00E-02	1.70E-09	7 27E-12		
Anthracene	9 20E-01	1 44E-10	3 00E-01	4 80E-10	1 03E-11		
Benzo(a)anthracene	2 20E+00	3 44E-10			2 46E-11	7 30E-01	1 80E-11
Benzo(a)pyrene	2.30E+00	3 60E-10			2.57E-11	7 30E+00	1 88E-10
Benzo(b)fluoranthene	2 80E+00	4 38E-10	6 00E-02	7.31E-09	3 13E-11	7 30E-01	2 29E-11
Benzo(g.h.)perviene Benzo(k)fhioranthene	1 20E+00	1 88E-10	3 00E-02	6 26E-09	1 34E-11		
Chrysene	2 20E+00	3 44E-10	<u> </u>		2 46E-11	7 30E-02	1 80E-12
Di-n-butyl phthalate	3 00E+00	4 70E-10			3 35E-11	7 30E-03	2 45E-13
Dibenz(a, h)anthracene	3 00E-01	4.70E-11	1 00E-01	4 70E-10	3.35E-12	I	
Dibenzofuran	6 20E-01	9.71E-11			6 93E-12	7 30E+00	5 06E-11
Fluoranthene	6 20E-01	9 71E-11	4 00E-03	2 43E-08	6 93E-12		
Fluorene	6 50E-01	1 19E-09	4 00E-02	2 97E-08	8 50E-11		
Indeno(1 2,3-cd)pyrene	1 20E+00	1 02E-10 1 88E-10	4 00E-02	2 54E-09	7 27E-12		
Naphthaiene	9 60E-01	1 50E-10	1 105 10		1 34E-11	7 30E-01	9 80E-12
Phenanthrene	4 30E+00	6.73E-10	3 00E-02	5 01E-09	1 07E-11		
Pyrene	4 60E+00	7 20E-10	3 00E-02	2.24E-08	4 81E-11	ļ	
ois(2-Ethylhexyl)phthalate	3.50E+00	5 48E-10	3 00E-02	2 40E-08	5 14E-11		
VolatileOrganics	, 30E+(X)	3 488-10	2 00E-02	2.74E-08	3 91E-11	I 40E-02	5 48E-13
2-Butanone (MEK)	3 60E⊣)2	5 64E-12	225				
Acctone	7 90E-02	1 24E-11	6.00E-01	9 39E-12	4 03E-13		
Carbon disulfide	9 20E-03	1 44E-12	1 00E-01	1 24E-10	8 83E-13		
Chlorobenzene	6 90E-01	1 08E-10	2 00E-02	1.44E-11 5.40E-09	1 03E-13	ļI	
Chloromethane	2 50E-02	3 91E-12	2 (RE-02) 40E-09	7 72E-12	1 105 01	
Ethylbenzene	8 10E-03	1 27E-12	1 00E-01	1 27E-11	2 80E-13 9 06E-14	1 30E-02	3 63E-15
Methylene chlonde	1 30E-02	2 04E-12	5 00E-02	3 39E-11	9 06E-14	7.605.01	1,005
ityrene	1 70E-02	2 66E-12	2 00E-01	1 33E-11	1 45E-13 1 90E-13	7 50E-01	1.09E-15
Toluene	1 30E-02	2 04E-12	2.00E-01	1 02E-11	1 45E-13	 	
Xylenes (total)	0 10E-01	9.55E-13	2 00E+00	4 77E-13	6 82E-14		
			AZARD INDEX =	4 //-E-13		CANCER RISK =	3 12E-10

NTF + No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (FUTURE USE SCENARIO)

Equation CDI = (CS : CF : SA : AF : ABS : EF : ED)/(BW : ATI : AT2)
Hazard Quotient = CDI / RTD
Cancer Risk = CDI : Slope Factor

Where:

CDI = Chronic Daily Intake CS = Concentration in Sedimenta

CF = Conversion Factor (10 kg/mg)

SA = Skin Surface Area Available for Contact = 9,800 cm³

SA = Skin Surface Area Available for Contact = 9,800 cm³

AF = Dermal Soil Adherence Factor = 1.0 mg/cm³

ABS = Abnorption Factor = 1.0% for organics and 0.1% for inorganics

EF = Exposure Frequency = 5 days per year

ED = Exposure Duration = 25 years

BW = Body Weight = 70 kg

ATI = Bays Per Year = 365 days

ATZ = Averaging Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor

RTD = Reference Dose

	4	NON-CANCER	Į	HAZARD	CANCER		CANCER
CHEMICALS	cs	CDI	R/D	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals						(mg/18-0)/-1	(unities)
Antimony	5 30E+00	1 02E-08	4 00E-04	2.54E-05	3 63E-09	 	
Beryllium	5 90E-01	1 13E-09	5 00E-03	2 26E-07	4 04E-10	4.30E+00	1 7 1 7 7
Cadmium	4 60E+02	8 82E-07	1 00E-03	8 82E-04	3 15E-07	4.30E 400	1.74E-09
Chromium	9 10E+02	1.75E-06	5 00E-03	3 49E-04	6 23E-07		
Cobalt	1 60E+01	3 07E-08	6 00E-02	5 11E-07	1 10E-08		
Lead	3 40E+02	6 52E-07	MIE		2 33E-07	NIE	
Mercury	1.10E+00	2 11E-09	3.00E-04	7 03E-06	7 53E-10	NIF	
Nickel	2.20E+02	4.22E-07	2 00E-02	2 11E-05	1 51E-07		
Silver	8 20E+00	1 57E-08	5 00E-03	3 15E-06	5 62E-09		
Thallium	1 30E+02	2.49E-07	8 00E-05	3 12E-03	8 90E-08		
Vanadium	3 00E+01	5 75E-08	7 00E-03	8 22E-06	2.05E-08		
Pesticides/PCBs					2.002.408		
4.4'-DDD	4 20E-02	8.05E-10			3.885.10		
Arocior 1254	4 90E+00	9.40E-08	2.00E-05	4 70E-03	2.88E-10 3.36E-08	2 40E-01	6 90E-11
Endosulfan II	9 30E-02	1.78E-09	6 00E-03	2 97E-07	6.37E-10	2 00E+00	6.71E-08
gamma-Chlordane	2 30E-02	4 41E-10	6 00E-05	7 35E-06			
Semivolatile Organics	†		0 002-03	7.33E-06	1 58E-10	1.30E+00	2.05E-10
1.2-Dichlorobenzene	2.20E-01	4 22E-09	9 00E-02	1 /05 05			
1.4-Dichlorobenzene	1 10E+00	2 11E-09	9 00E-02	4 69E-08	1.51E-09		
-Chioronaphthaiene	2 30E-01	4 41E-09	3 00E-02	1.125.02	7 53E-10	2 40E-02	1.81E-11
-Chioronaphthalene	5 00E-01	9 59E-09	8.00E-02	1 47E-07	1 58E-09		
-Methylnaphthalene	1.50E+00	2 88E-08		1 20E-07	3 42E-09		
Acenaphthene	1 10E+00	2.11E-08	3 00E-02 6 00E-02	9 59E-07	1 03E-08		
Anthracene	1 80E+00	3 45E-08		3 52E-07	7 53E-09		
Benzo(a)anthracene	5 90E+00	1 13E-07	3 00E-01	1 15E-07	1 23E-08		
Benzo(a)pyrene	6 10E+00	1 17E-07			4 04E-08	7.30E-01	2 95E-08
Benzo(b)fluoranthene	9 30E+00	1 78E-07			4 18E-08	7 30E+00	3 05E-07
Benzo(g.h.)perviene	2 80E+00	5 37E-08	6 00E-02	2 97E-06	6 37E-08	7 30E-01	4 65E-08
Benzoik)fluoranthene	6 00E+00	1 15E-07	3 00E-02	1 79E-06	1 92E-08		
hr sene	9 40E+00	1 80E-07			4 11E-08	7 30E-02	3 00E-09
Di-n-butyl phthalate	3 00E-01	5.75E-09			6.44E-08	7 30E-03	4 70E-10
Dibenz(a,b)anthracene	1.00E+00		1 00E-01	5.75E-08	2 05E-09		
Dibenzofuran	1 10E+00	1 92E-08 2 11E-08			6 85E-09	7.30E+00	5 00E-08
luoranthene	2 70E+01		4 00E=03	5 27E-06	7.53E-09		
luorene	1 10E+00	5 18E-07	4 00E-02	1 29E-05	1 85E-07		
ndeno(1,2,3-cd)pyrene	2 40E+00	2 11E-08	4 00E-02	5 27E-07	7.53E-09		
aphthalene	2 20E+00	4 60E-08			1 64E-08	7 30E-01	1 20E-08
henanthrene	1.50E+01	4 22E-08	3 DOE-02	1.41E-06	1.51E-08		
rene	1.70E+01	2 88E-07	3 00E-02	9 59E-06	1 03E-07		
15(2-Ethylhexyl)phthalate	9 90E+00	3 26E-07	3 00E-02	1 09E-05	1 16E-07		
VolatileOrganics	, A/E 4/A)	1 90E-07	2 90E-02	9 49E-06	6 78E-08	1.40E-02	9 49E-10
-Butanone (MEK)	3 60E-02						
octone	1.50E=01	5 90E-10	5 00E-01	1.15E-09	2 47E-10		
arbon disulfide		2 88E-09	1 00E-01	2 88E-08	L03E-09		
hiombenzene	9 20E-03	1.76E-11	1 00E-01	1 '6E-10	6 30E-12		
hioromethane	5 90E-01	1 32E-08	2 (X)E-02	6 62E-07	4 "1E-09		
thylbenzene	2 50E-02	4.79E-10			1 71E-10	1 30E-02	2 23E-12
fethylene chlonde	8 10E-03	1.55E-10	100E=01	1.55E-09	5.55E-11		
tyrene chionae	1.30E-02	2 49E-10	6 00E-02	4 16E-09	8 90E-11	7 50E-03	6 68E-13
oiuene	1.70E-02	1 26E-10	2 00E-01	L63E-09	1 16E-10		
vienes (total)	1 30E-02	2 49E-11	2 00E-01	1 25E-10	8 90E-12		
	6 10E403	1 17E-11	2 00E+00	5.85E-12	+ 18E-12		

HAZARD INDEX = 9 18E-03 TOTAL CANCER RISK = 5 LTE-07

NTE + No critical toxicity values - nurrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - AVERAGE EXPOSURE (FUTURE USE SCENARIO)

Equation CDI = (CS x CF x IR x EF x ED)(BW x AT1 x AT2)
Hazard Quotient = CDI / RTD
Cancer Risk = CDI x Slope Factor

CDI - Chronic Daily Intake

CDI - Chronic Daily Intake

CS = Concentration in Sediments

CF = Conversion Factor (10 * kg/mg)

IR = Sediment Ingestion Rate = 10 mg/day

EF = Exposure Prequency = 1 day per year

ED = Exposure Duration = 5 years

BW = Body Weight = 70 kg

ATI = Days Per Year = 365 days

ATI = Average Time (70 years for cancer causing effects, 5 years for effects other than carcinogenicity)

SF = Slope Factor

RTD = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCE
CHEMICALS	cs	CDI	R/D	QUOTIENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless
Metals							
Antimony	4 90E+00	1 92E-09	4 00E-04	4 79E-06	1 37E-10		
Beryllium	4 50E-01	1 76E-10	5 00E-03	3.52E-08	1.26E-11	4 30E+00	5 41E-1
admium	5 80E+01	2 27E-08	1 00E-03	2 27E-05	1 62E-09		7 110-1
hromum	4 20E+02	1 64E-07	5 00E-03	3 29E-05	1 17E-08		
obalt	1 20E+01	4.70E-09	6 00E-02	7 83E-08	3.35E-10		
.cad	I 40E+02	5 48E-08	NTF		3 91E-09	NTF	
dercury	7 00E-01	2.74E-10	3 00E-04	9 13E-07	1 96E-11		
Nickel	1 30E+02	5 09E-08	2 00E-02	2.54E-06	3 63E-09		
Silver	4 50E+00	1.76E-09	5 00E-03	3 52E-07	1 26E-10		
hallium	1 30E+02	5 09E-08	8 00E-05	6 36E-04	3 63E-09		
/anadium	2 50E+01	9 78E-09	7 00E-03	1 40E-06	6 99E-10		
Pesticides/PCBs					07.12.10		
4'-DDD	4 20E-02	1 64E-11			1 17E-12	2.40E-01	1.035
rocior 1254	1 60E+00	6.26E-10	2 00E-05	3 13E-05	4 47E-11	1.00E+00	2.82E-13
ndosulfan II	7 10E-02	2 78E-11	6 00E-03	4.63E-09	1 98E-12	1.00E+00	4 47E-1
amma-Chlordane	2 30E-02	9 00E-12	6 00E-05	1.50E-07	6.43E-13	1 30E+00	4 3/F ::
Semivolatile Organics			0 000 00	1.304,47	3.43E-13	1305+00	8 36E-13
2-Dichlorobenzene	2 20E-01	8.61E-11	9 00E-02	9.57E-10	(145.15		
4-Dichlorobenzene	7 50E-01	2.94E-10	7 (A)E-02	9.3/E-10	6 15E-12		
-Chioronaphthalene	2 30E-01	9.00E-11	3 00E-02	3 00E-09	2.10E-11	2 40E-02	5 03E-1
-Chioronaphthalene	5 00E-01	1 96E-10	8 00E-02	3 00E-09 2.45E-09	6.43E-12		
-Methylnaphthalene	7 70E-01	3 01E-10	3 00E-02		1.40E-11		
cenaphthene	6.50E-01	2 54E-10	6.00E-02	1.00E-08	2.15E-11		
nthracene	9 20E-01	3 60E-10	3.00E-01	4 24E-09	1 82E-11		
enzo(a)anthracene	2 20E+00	8 6 IE-10	3 005-01	1.20E-09	2 57E-11		
enzo(a)pyrene	2 30E+00	9.00E 10			6.15E-11	7 30E-01	4 49E-1
lenzo(b)fluoranthene	2 80E+00	1 10E-05	6 DOE-02	1.025.02	6 43E-11	7 30E+00	4 69E-10
lenzo(g,h.i)perviene	1 20E+00	4 70E-10	3 00E-02	1 83E-08 1 57E-08	7 83E-11	7 30E-01	5.71E-11
cnzo(k)fluoranthene	2 20E+00	8 61E-10) 00E-02	13/E-08	3 35E-11		
hrysene	3 00E+00	1 17E-09			6 15E-11	7 30E-02	4 49E-12
)ı-n-butvl phthaiate	3 00E-01	1 17E-10	1 00E-01	1.175.00	8.39E-11	7 30E-03	6 12E-13
benz(a.h)anthracene	6 20E-01	2 43E-10	1 (NE-01	1 17E-09	8 39E-12		
benzofuran	6 20E-01	2 43E-10	LIMPE OF		1.73E-11	7.30E+00	1.27E-10
luoranthene	7.60E+00	2 43E-10 2 97E-09	4 00E-03 4 00E-02	6 07E-08	1.73E-11		
luorene	6 50E-01	2 54E-10		7 44E-08	2 12E-10		
ndeno(1,2,3-cd)pyrene	1 20E+00	4 70E-10	4 00E-02	6.36E-09	1 82E-11		
aphthalene	9 60E-01	3.76E-10	1.000.02	1 345 04	3 35E-11	7 30E-01	2 45E-11
henanthrene	4 30E+00	1 68E-09	3 00E-02 3 00E-02	1 25E-08	2 68E-11		
Viene	4 50E+00	1 80E-09		5 61E-08	1 20E-10		
isi 2-Ethylhexyl)phthalate	3 50E+00	1 37E-09	3 00E-02 2 00E-02	6 00E-08	1 29E-10		
VolatileOrganics	, JUE 110	1 3 · E -07	2 (IDE-02	6 85E-08	9 78E-11	1 40E-02	1.37E-12
-Butanone (MEK)	3 60E-02	1 41E-11	. 005.01	2345 11			
cetone (MEK)	7 90E-02	3 09E-11	6 00E-01	2 35E-11	1 01E-12		
arbon disulfide	9 20E-03	3 60E-12	1 00E-01	3 09E-10	2 21E-12		
hiorobenzene	6 90E-01	2 70E-10	1 00E-01	3.60E-11	2.57E-13		
hioromethane	2 50E-02		2 00E-02	1.35E-08	1 93E-11		
thy ibenzene	8 10E-03	9.78E-12			6 99E-13	1 30E-02	9 09E-15
fethylene chionde		3 17E-12	1008-01	3 17E-11	2.26E-13		
tyrene chioride	1 30E-02	5 09E-12	5 00E-02	8 48E-11	1 63E-13	7 50E-03	2 73E-15
oluene	1.70E-02	6 65E-12	2 00E-01	3 33E-11	4 75E-13		
vienes (total)	1 30E-02	5 09E-12	2 00E-01	2 54E-11	3 63E-13		
YICINCS (LOCALI)	6 10E-01	2 39E-12	2.00€ +00	1 19E-12	171E-13		

NTF = No critical toxicity values - surrogate toxicity values are not available for these chemicals; therefore, they were not evaluated in the quantitative risk assessment.

TINKER AFB SITE - ON-BASE EAST SOLDIER CREEK (AREA 3) INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS ON-BASE CONSTRUCTION WORKER - RME (FUTURE USE SCENARIO)

Equation CDI = (CS x CF x IR x EF x EDV(BW x ATI x AT2)

Hazard Quotient = CD1 / RfD Cancer Risk = CD1 x Slope Factor

CDI - Chronic Daily Intake

CS = Concentration in Sediments

CS = Concentration in Sediments

CF = Conversion Factor (10* kg/mg)

IR = Sediment Ingestion Rate = 50 mg/day

EF = Exponure Frequency = 5 days per year

ED = Exponure Pouration = 25 years

BW = Body Weight = 70 kg

AT1 = Days Per Year = 365 days

AT2 = Average Time (70 years for cancer causing effects, 25 years for effects other than carcinogenicity)

SF = Slope Factor

R/D = Reference Dose

		NON-CANCER		HAZARD	CANCER		CANCER
CHEMICALS	CS	CDI	RTD	QUOTTENT	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)-1	(unitiess)
Metals							
Antimony	5 30E =00	5 19E-08	4 00E-04	1 30E-04	1 85E-08		
Beryllium	5 90E-01	5 77E-09	5 00E-03	1 15E-06	2.06E-09	4.30E+00	8 87E-09
Cadmium	4 60E+02	4 50E-06	1 00E-03	4 50E-03	1 61E-06		
Chromium	9 10E+02	8 90E-06	5 00E-03	1.78E-03	3 18E-06		
Cobait	1 60E+01	1 57E-07	6.00E-02	2 61E-06	5 59E-08		
Lead	3 40E+02	3 33E-06	NTF		1 19E-06	NTF	
Mercury	1 10E+00	1 08E-08	3 00E-04	3 59E-05	3 84E-09		
Nickel	2 20E+02	2 15E-06	2 00E-02	1 08E-04	7 69E-07		
Silver	8 20E+00	8 02E-08	5 00E-03	1 60E-05	2.87E-08		
Thallium	1.30E+02	1 27E-06	8 00E-05	1 59E-02	4 54E-07		
Vanadium	3 00E+01	2 94E-07	7 00E-03	4 19E-05	1 05E-07		
Pesticides/PCBa							
4,4'-DDD	4 20E-02	4 11E-10	 		1 47E-10	2 40E-01	3 52E-11
Aroclor 1254	4.90E+00	4 79E-08	2 00E-05	2.40E-03	1.71E-08	2 00E+00	3.42E-08
Endosulfan II	9 30E-02	9 10E-10	6 00E-03	1.52E-07	3 25E-10	2.00E=00	3.44E-08
ramma-Chlordane	2 30E-02	2 25E-10	6 00E-05	3.75E-06	8 04E-11	1 30E+00	1.04E-10
Semivolatile Organics	+	- LJL 10	0.002-03) / / L-7/0	9 (ME-11	1 305 400	1.046-10
1.2-Dichlorobenzene	2 20E-01	2 15E-09	9 00E-02	2 39E-08	7 69E-10		
1.4-Dichlorobenzene	1.10E+00	1 08E-08	9 006-02	2 39E-08	1 84E-09		
-Chloronaphthalene	2.30E-01	2 25E-09	3 00E-02	7 50E-08		2.40E-02	9 23E-11
-Chloronaphthaiene	5 00E-01	4 89E-09	8 00E-02		8 04E-10		
-Methylnaphthaiene	1 50E+00	1.47E-08		6.12E-08	1.75E-09		
Acenaphthene	1 10E+00	1.47E-08	3 00E-02	4 89E-07	5.24E-09		
Anthracene	1 80E+00		6 00E-02	1.79E-07	3 84E-09		
Benzo(a)anthracene		1.76E-08	3 00E-01	5 87E-08	6.29E-09		
	5 90E+00	5 77E-08			2 06E-08	7 30E-01	1 51E-08
Benzo(a)pyrene	6 10E+00	5 97E-08			2 13E-08	7 30E+00	1.56E-07
Benzo(b)fluoranthene	9 30E+00	9 10E-08	6 00E-02	1 52E-06	3 25E-08	7 30E-01	2 37E-08
Benzo(g,h,) perylene	2 80E+00	2.74E-08	3 00E-02	9 13E-07	9 78E-09		
Benzo(k)fluoranthene	6 00E+00	5 87E-08			2 10E-08	7 30E-02	1 53E-09
Chry sene	9 40E+00	9 20E-08			3 28E-08	7 30E-03	2 40E-10
Di-n-butyl phthalate	3 00E-01	2 94E-09	1 00E-01	2 94E-08	1 05E-09		
Dibenz(a.h)anthracene	L00E+00	9.78E-()9			3 49E-09	7 30E+00	2 55E-08
Dibenzofuran	1.10E+00	1 08E 408	4 00E-03	2 69E-06	3 84E-09		
luoranthene	2.70E+01	2 64 E 407	4 00E-02	6 60E-06	9 44E-08		
Fluorene	1.10E+00	1.08E-08	4 00E-02	2 69E-07	3 84E-09		
ndeno(1.2.3-cd)pyrene	2 40E+00	2 35E-08			8 39E-09	7 30E-01	6 12E-09
Naphthalene	2 20E+00	2.15E-08	3 00E-02	7 18E-07	7 69E-09		
Phenanthrene	1.50E+01	1.47E-07	3 00E-02	4 89E-06	5 24E-08	·	
утеле	1.70E+01	1.66E-07	3 00E-02	5 54E-06	5 94E-08		
oss 2-Ethylhexyi)phthaiate	9 90E+00	9 69E-08	2 00E-02	4 84E-06	3 46E-08	1 40E-02	4 84E-10
VolatileOrganica							10
2-Butanone (MEK)	3 60E-02	3 52E-10	6.00E-01	5 87E-10	1 26E-10		
Acetone	1.50E-01	1.47E-09	100E-01	1 47E-08	5 24E-10		
Carbon disulfide	9 20E-03	4 00E-11	1 00E-01	9 00E-10	3 21E-11		
Chlorobenzene	6 90E-01	6.75E409	2 00E-02	3 38E-07	2 41E-09		
Chioromethane	2.50E-02	2.45E-10			8 74E-11	1 30E-02	1 14E-12
Ethy (benzene	8 10E-03	1 93E-11	1.00E-01	7 93E-10	2 83E-11	1,00,00	1 174,-12
Methylene chlonde	1 30E-02	1.2°E-10	5 00E-02	2.12E-09	4 54E-11	7 50E-03	3 41E-13
Styrene	1.70E-02	1 66E-10	2 00E-01	8 32E-10	5 94E-11	308403	3 41E-13
Toluene	1 30E-02	1 2°E-10	2 00E-01	6 36E-10	4 54E-11		
(vienes (total)	6 10E-03	5 97E-11	2 00E-01	2 98E-11			
	O LOLON	7 7 C 1 1	4 00E **AU	2 78E-11	2 13E-11		

NTF + No critical toxicity values - surrogate toxicity values are not available for these chemicals, therefore, they were not evaluated in the quantitative risk assessment

AREA 4 OFF-BASE EAST SOLDIER CREEK

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) INCIDENTAL INGESTION OF CHEMICALS IN SURFACE WATER DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = [(IRc x ETc x EFc x EDc) / BWc + (IRa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)

 $CDI = CW \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water
IRc = Child Ingestion Rate = 0.025 L/hour
ETc = Child Exposure Time = 3 hours/day

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

IRa = Adult Ingestion Rate = 0.0025 L/hour ETa = Adult Exposure Time = 1 hour /day

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 9 years

BW = Adult Body Weight = 57.1 kg

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CW	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/L)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals									
Antimony	2.90E-04	8.28E-05	2.40E-08	4.00E-04	6.00E-05	1.66E-05	4.80E-09		
Arsenic	2.50E-03	8.28E-05	2.07E-07	3.00E-04	6.90E-04	1.66E-05	4.14E-08	1.50E+00	6.21E-08
Cadmium	9.50E-04	8.28E-05	7.86E-08	5.00E-04	1.57E-04	1.66E-05	1.57E-08		
Cobalt	3.60E-04	8.28E-05	2.98E-08	6.00E-02	4.97E-07	1.66E-05	5.96E-09		
Nickel	9.50E-03	8.28E-05	7.86E-07	2.00E-02	3.93E-05	1.66E-05	1.57E-07		
Vanadium	1.20E-02	8.28E-05	9.93E-07	7.00E-03	1.42E-04	1.66E-05	1.99E-07		
Semivolatile Organics									
bis(2-Ethylhexyl)phthalate	4.80E-03	8.28E-05	3.97E-07	2.00E-02	1.99E-05	1.66E-05	7.95E-08	1.40E-02	1.11E-09
Volatile Organics									
Acetone	4.10E-03	8.28E-05	3.39E-07	1.00E-02	3.39E-05	1.66E-05	6.79E-08		

HAZARD INDEX = 1.14E-03

TOTAL CANCER RISK = 6.32E-08

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) INCIDENTAL INGESTION OF CHEMICALS IN SURFACE WATER DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = [(IRc x ETc x EFc x EDc) / BWc + (IRa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)

 $CDI = CW \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water IRc = Child Ingestion Rate = 0.05 L/hour ETc = Child Exposure Time = 6 hours/day

EFc = Child Exposure Frequency = 34 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

IPa = Adult Ingestion Pate = 0.005 L/hour

IRa = Adult Ingestion Rate = 0.005 L/hour ETa = Adult Exposure Time = 2 hour/day

EFa = Adult Exposure Frequency = 4 days per year

EDa = Adult Exposure Duration = 25 years BW = Adult Body Weight = 57.1 kg AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

SF = Slope Factor RfD = Reference Dose

		NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CW	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/L)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals									
Antimony	2.90E-04	3 10E-04	8 99E-08	4.00E-04	2.25E-04	1.33E-04	3.85E-08		
Arsenic	2.80E-03	3 10E-04	8.68E-07	3.00E-04	2.89E-03	1 33E-04	3.72E-07	1 50E+00	5 58E-07
Cadmium	1 30E-03	3 10E-04	4 03E-07	5 00E-04	8.06E-04	1.33E-04	1.73E-07		
Cobalt	4 00E-04	3.10E-04	1.24E-07	6.00E-02	2.07E-06	1.33E-04	5.32E-08		<u> </u>
Nickel	1 20E-02	3.10E-04	3.72E-06	2.00E-02	1 86E-04	1 33E-04	1.59E-06		
Vanadium	1 60E-02	3 10E-04	4 96E-06	7 00E-03	7 09E-04	1 33E-04	2.13E-06		
Semivolatile Organics									
bis(2-Ethylhexyl)phthalate	5 00E-03	3.10E-04	1.55E-06	2.00E-02	7.75E-05	1.33E-04	6.64E-07	1 40E-02	9 30E-09
Volatile Organics									†
Acetone	4 10E-03	3 10E-04	1 27E-06	1 00E-02	1 27E-04	1.33E-04	5.45E-07		1
									İ

HAZARD INDEX = 5 03E-03

TOTAL CANCER RISK = 5 67E-07

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = { [(SAc x ETc x EFc x EDc) / BWc + (SAa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)} x CF

 $CDI = CW \times PC \times HIF$ Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water

PC = Chemical-specific Dermal Permeability Constant

SAc = Child Skin Surface Area Available for Contact = 1.800 cm²

ETc = Child Exposure Time = 3 hours/day

EFc = Child Exposure Frequency = 17 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

SAa = Adult Skin Surface Area Available for Contact = 2,800 cm²

ETa = Adult Exposure Time = 1 hour /day

EFa = Adult Exposure Frequency = 2 days per year

EDa = Adult Exposure Duration = 9 years

BW = Adult Body Weight = 57.1 kg

CF = Conversion Factor (1L/1000cm²)

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

SF = Slope Factor

RfD = Reference Dose

CHEMICALS OF CONCERN	CW (mg/L)	PCa (cm/br)	NON-CANCER HIF (L/kg-dy)	NON-CANCER CDI	RfD (==(ks, dv)	HAZARD QUOTIENT	CANCER HIF	CANCER CDI	SF (== 0 = dx) 1	CANCER RISK
	(mg/L)	(CHDBF)	(Dkg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals					L					
Antimony	2.90E-04	0 001	2 17E-02	6 28E-09	4 00E-04	1.57E-05	4.33E-03	1.26E-09		
Arsenic	2.50E-03	0.001	2.17E-02	5 41E-08	3 00E-04	1.80E-04	4.33E-03	1.08E-08	1.50E+00	1 62E-08
Cadmium	9.50E-04	0.001	2 17E-02	2.06E-08	5.00E-04	4.11E-05	4.33E-03	4.11E-09		
Cobalt	3.60E-04	0 001	2.17E-02	7.80E-09	6.00E-02	1.30E-07	4.33E-03	1.56E-09		
Nickel	9 50E-03	0.001	2 17E-02	2.06E-07	2.00E-02	1.03E-05	4.33E-03	4.11E-08		1
Vanadium	1 20E-02	0.001	2 17E-02	2.60E-07	7.00E-03	3.71E-05	4.33E-03	5.20E-08		
Semivolatile Organics										
bis(2-Ethylhexyl)phthalate	4 80E-03	0 032	2.17E-02	3.33E-06	2.00E-02	1.66E-04	4.33E-03	6 65E-07	1 40E-02	9 31E-09
Volatile Organics					1			İ		†
Acetone	4 10E-03					†	1			
	1			1	1	1		 		

HAZARD INDEX =

TOTAL CANCER RISK =

Note

a Due to the volatility, volatile organics are assumed not available for dermal absorption

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) DERMAL EXPOSURE TO CHEMICALS IN SURFACE WATER DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF ={ [(SAc x ETc x EFc x EDc) / BWc + (SAa x ETa x EFa x EDa) / BWa] / (AT1 x AT2)} x CF

CDI = CW x PC x HIF Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF = Human Intake Factor

CDI = Chronic Daily Intake

CW = Concentration in Surface Water

PC = Chemical-specific Dermal Permeability Constant

SAc = Child Skin Surface Area Available for Contact = 6,500 cm²

ETc = Child Exposure Time = 6 hours/day

EFc = Child Exposure Frequency = 34 days per year

EDc = Child Exposure Duration = 5 years

BWc = Child Body Weight = 15.1 kg

SAa = Adult Skin Surface Area Available for Contact = 8,620 cm²

ETa = Adult Exposure Time = 2 hour /day

EFa = Adult Exposure Frequency = 4 days per year

EDa = Adult Exposure Duration = 25 years

BW = Adult Body Weight = 57.1 kg

CF = Conversion Factor (1L/1000cm²)

AT1 = Days Per Year = 365 days/year

AT2 = Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

SF = Slope Factor

RfD =	Reference	Dose

		NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CW	PC*	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
(mg/L)	(cm/hr)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(L/kg-dy)	(mg/kg-dy)	(mg/kg-dy) ⁻¹	(unitless)
2.90E-04	1.00E-03	4 29E-02	1.24E-08	4.00E-04	3.11E-05	1.84E-02	5.33E-09		
2.80E-03	1.00E-03	4 29E-02	1.20E-07	3.00E-04	4.00E-04	1.84E-02	5.14E-08	1.50E+00	7.71E-08
1 30E-03	1.00E-03	4 29E-02	5.57E-08	5.00E-04	1.11E-04	1.84E-02	2.39E-08		
4 00E-04	1.00E-03	4 29E-02	1.71E-08	6.00E-02	2.86E-07	1.84E-02	7.35E-09		
1 20E-02	1.00E-03	4.29E-02	5.14E-07	2.00E-02	2.57E-05	1.84E-02	2.20E-07		
1.60E-02	1 00E-03	4 29E-02	6 86E-07	7.00E-03	9.80E-05	1 84E-02	2.94E-07		
5 00E-03	3 20E-02	4 29E-02	6 86E-06	2.00E-02	3 43E-04	1 84E-02	2.94E-06	1.40E-02	4 11E-08
							I		
4 10E-03									
	2 90E-04 2 80E-03 1 30E-03 4 00E-04 1 20E-02 1 60E-02	(mg/L) (cm/hr) 2 90E-04 1 00E-03 2 80E-03 1 00E-03 1 30E-03 1 00E-03 4 00E-04 1 00E-03 1 20E-02 1 00E-03 1 60E-02 1 00E-03 5 00E-03 3 20E-02	CW (mg/L) PC* (cm/hr) H1F (L/kg-dy) 2 90E-04 1 00E-03 4 29E-02 2 80E-03 1 00E-03 4 29E-02 1 30E-03 1 00E-03 4 29E-02 4 00E-04 1 00E-03 4 29E-02 1 20E-02 1 00E-03 4 29E-02 1 60E-02 1 00E-03 4 29E-02 5 00E-03 3 20E-02 4 29E-02	CW (mg/L) PC* (cm/hr) H1F (L/kg-dy) CD1 (mg/kg-dy) 2 90E-04 1 00E-03 4 29E-02 1 24E-08 2 80E-03 1 00E-03 4 29E-02 1 20E-07 1 30E-03 1 00E-03 4 29E-02 5 57E-08 4 00E-04 1 00E-03 4 29E-02 1 71E-08 1 20E-02 1 00E-03 4 29E-02 5 14E-07 1 60E-02 1 00E-03 4 29E-02 6 86E-07 5 00E-03 3 20E-02 4 29E-02 6 86E-06	CW (mg/L) PC* (cm/hr) H1F (L/kg-dy) CD1 (mg/kg-dy) RfD (mg/kg-dy) 2 90E-04 1 00E-03 4 29E-02 1 24E-08 4 00E-04 2 80E-03 1 00E-03 4 29E-02 1 20E-07 3 00E-04 1 30E-03 1 00E-03 4 29E-02 5 57E-08 5 00E-04 4 00E-04 1 00E-03 4 29E-02 1 71E-08 6 00E-02 1 20E-02 1 00E-03 4 29E-02 5 14E-07 2 00E-02 1 60E-02 1 00E-03 4 29E-02 6 86E-07 7 00E-03 5 00E-03 3 20E-02 4 29E-02 6 86E-06 2 00E-02	CW (mg/L) PC* (cm/hr) H1F (L/kg-dy) CD1 (mg/kg-dy) RfD (mg/kg-dy) QUOT1ENT (unitless) 2 90E-04 1 00E-03 4 29E-02 1 24E-08 4 00E-04 3 11E-05 2 80E-03 1 00E-03 4 29E-02 1 20E-07 3 00E-04 4 00E-04 1 30E-03 1 00E-03 4 29E-02 5 57E-08 5 00E-04 1 11E-04 4 00E-04 1 00E-03 4 29E-02 1 71E-08 6 00E-02 2 86E-07 1 20E-02 1 00E-03 4 29E-02 5 14E-07 2 00E-02 2 57E-05 1 60E-02 1 00E-03 4 29E-02 6 86E-07 7 00E-03 9 80E-05 5 00E-03 3 20E-02 4 29E-02 6 86E-06 2 00E-02 3 43E-04	CW PC* HIF CDI RfD QUOTIENT (unitless) HIF (mg/L) (cm/hr) (L/kg-dy) (mg/kg-dy) (mg/kg-dy) (unitless) HIF 2 90E-04 1 00E-03 4 29E-02 1 24E-08 4 00E-04 3 11E-05 1.84E-02 2 80E-03 1 00E-03 4 29E-02 1 20E-07 3 00E-04 4 00E-04 1.84E-02 1 30E-03 1 00E-03 4 29E-02 5 57E-08 5 00E-04 1.11E-04 1 84E-02 4 00E-04 1 00E-03 4 29E-02 1 71E-08 6 00E-02 2.86E-07 1 84E-02 1 20E-02 1 00E-03 4 29E-02 5 14E-07 2 00E-02 2.57E-05 1 84E-02 1 60E-02 1 00E-03 4 29E-02 6 86E-07 7 00E-03 9 80E-05 1 84E-02 5 00E-03 3 20E-02 4 29E-02 6 86E-06 2 00E-02 3 43E-04 1 84E-02	CW PC* H1F CDI RfD QUOTIENT (unitless) H1F CDI (mg/kg-dy) 2 90E-04 1 00E-03 4 29E-02 1 24E-08 4 00E-04 3 11E-05 1.84E-02 5 33E-09 2 80E-03 1 00E-03 4 29E-02 1.20E-07 3 00E-04 4 00E-04 1.84E-02 5 14E-08 1 30E-03 1 00E-03 4 29E-02 5 57E-08 5 00E-04 1.11E-04 1 84E-02 2 39E-08 4 00E-04 1 00E-03 4 29E-02 5 77E-08 5 00E-04 1.11E-04 1 84E-02 2 39E-08 4 00E-04 1 00E-03 4 29E-02 5 14E-07 2 00E-02 2 86E-07 1 84E-02 7 35E-09 1 20E-02 1 00E-03 4 29E-02 5 14E-07 2 00E-02 2 57E-05 1 84E-02 2 20E-07 1 60E-02 1 00E-03 4 29E-02 6 86E-07 7 00E-03 9 80E-05 1 84E-02 2 94E-07 5 00E-03 3 20E-02 4 29E-02 6 86E-07 7 00E-03 3 43E-04 1 84E-02 2 94E-06	CW PC* HIF CDI RfD QUOTIENT (unitless) HIF CDI SF (mg/L) (cm/hr) (L/kg-dy) (mg/kg-dy) (mg/kg-dy) (unitless) (L/kg-dy) (mg/kg-dy) (mg/kg-dy) ⁻¹ 2 90E-04 1 00E-03 4 29E-02 1 24E-08 4 00E-04 3 11E-05 1.84E-02 5 33E-09 2 80E-03 1 00E-03 4 29E-02 1 .20E-07 3 00E-04 4 00E-04 1.84E-02 5 14E-08 1.50E+00 1 30E-03 1 00E-03 4 29E-02 5 57E-08 5 00E-04 1 11E-04 1 84E-02 2 39E-08 1.50E+00 4 00E-04 1 00E-03 4 29E-02 1 71E-08 6 00E-02 2 86E-07 1 84E-02 2 39E-08 1 20E-02 1 00E-03 4 29E-02 5 14E-07 2 00E-02 2 57E-05 1 84E-02 2 20E-07 1 60E-02 1 00E-03 4 29E-02 6 86E-07 7 00E-03 9 80E-05 1 84E-02 2 94E-07 5 00E-03 3 20E-02 4 29E-02 6 86E-06 2 00E-02

HAZARD INDEX = 101E-03 TOTAL CANCER RISK = 118E-07

Note

a. Due to the volatility, volatile organics are assumed not available for dermal absorption

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) INCIDENTAL INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = $\{\{(IRc \times EFc \times EDc) / BWc + (IRa \times EFa \times EDa) / BWa\} \times CF\}/(AT1x AT2)$

 $CDI = CS \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF= Human Intake Factor

CDI= Chronic Daily Intake

CS= Concentration in Sediments

IRc= Child Ingestion Rate = 100 mg/day

EFc= Child Exposure Frequency = 17 days per year

EDc= Child Exposure Duration = 5 years

BWc= Child Body Weight = 15.1 kg

IRa= Adult Ingestion Rate = 10 mg/day

EFa= Adult Exposure Frequency = 2 days per year

EDa= Adult Exposure Duration = 9 years BWa= Adult Body Weight = 57.1 kg

AT1= Days Per Year = 365 days/year

AT2= Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

CF= Conversion Factor = 0.000001 kg/mg

SF= Slope Factor

RfD= Reference Dose

		NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	CS	HIF	CDI	RM	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals	Ī								
Antimony	4 20E+00	1.11E-07	4.65E-07	4.00E-04	1.16E-03	2.22E-08	9.31E-08		
Beryllium	3.60E-01	1 11E-07	3 99E-08	5.00E-03	7.98E-06	2.22E-08	7.98E-09	4.30E+00	3.43E-03
Cadmium	7.50E+00	1.11E-07	8.31E-07	1.00E-03	8.31E-04	2.22E-08	1.66E-07		
Cobalt	4.70E+00	1.11E-07	5 21E-07	6.00E-02	8.68E-06	2.22E-08	1.04E-07		
Mercury	4.90E-02	1.11E-07	5 43E-09	3.00E-04	1.81E-05	2.22E-08	1.09E-09		
Thallium	7 10E+01	1 11E-07	7 87E-06	8.00E-05	9.83E-02	2.22E-08	1.57E-06		
Vanadium	1.70E+01	1 11E-07	1 88E-06	7 00E-03	2.69E-04	2.22E-08	3.77E-07		
Pesticides/PCBs									
Dieldrin	2.10E-03	1 11E-07	2.33E-10	5 00E-05	4 65E-06	2.22E-08	4.65E-11	1 60E+01	7.44E-10
Endosulfan II	2.10E-03	1 11E-07	2.33E-10	6.00E-03	3.88E-08	2.22E-08	4.65E-11		
Semivolatile Organics									
1.4-Dichlorobenzene	4.20E-02	1.11E-07	4.65E-09			2.22E-08	9.31E-10	2 40E-02	2.23E-11
1-Chloronaphthalene	4.90E-02	1 11E-07	5.43E-09	3.00E-02	1 81E-07	2.22E-08	1.09E-09		
2-Methylnaphthalene	1.30E-01	1 11E-07	1.44E-08	3.00E-02	4.80E-07	2.22E-08	2.88E-09		
Benzo(b)fluoranthene	4.00E-02	1 11E-07	4 43E-09			2.22E-08	8.86E-10	7 30E-01	6.47E-10
Chrysene	4 70E-02	1 11E-07	5 21E-09	Ī		2.22E-08	1.04E-09	7.30E-03	7.60E-12
Fluoranthene	3 10E-01	1 11E-07	3 43E-08	4 00E-02	8.59E-07	2.22E-08	6.87E-09		
Isophorone	4 10E-01	1 11E-07	4 54E-08	2 00E-01	2.27E-07	2.22E-08	9.08E-09	9.50E-04	8 63E-12
Phenanthrene	6 40E-02	1 11E-07	7 09E-09	3.00E-02	2.36E-07	2.22E-08	1.42E-09		
Pyrene	1 90E-01	1 11E-07	2.10E-08	3 00E-02	7 02E-07	2.22E-08	4.21E-09	1	
bis(2-Ethylhexyl)phthalate	1.40E+00	1 11E-07	1.55E-07	2.00E-02	7 75E-06	2.22E-08	3.10E-08	1 40E-02	4.34E-10
Volatile Organics									
2-Butanone (MEK)	6.00E-03	1 11E-07	6 65E-10	6.00E-01	1.11E-09	2.22E-08	1.33E-10		
Acetone	1 20E-02	1 11E-07	1 33E-09	1.00E-01	1.33E-08	2.22E-08	2.66E-10		
Carbon disulfide	3.10E-03	1 11E-07	3 43E-10	1 00E-01	3 43E-09	2.22E-08	6.87E-11		
Chlorobenzene	2 10E-02	1 11E-07	2.33E-09	2.00E-02	1.16E-07	2.22E-08	4.65E-10		
Methylene chloride	2.10E-03	1 11E-07	2.33E-10	6.00E-02	3.88E-09	2.22E-08	4.65E-11	7.50E-03	3 49E-13
- 4									

HAZARD INDEX = 1 01E-01 TOTAL CANCER RISK = 3 62E-08

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) INCIDENTAL INGESTION EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation HIF = $\{[(IRc \times EFc \times EDc) / BWc + (IRa \times EFa \times EDa) / BWa] \times CF\}/(AT1x AT2)$

 $CDI = CS \times HIF$

Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF= Human Intake Factor

CDI= Chronic Daily Intake
CS= Concentration in Sediments

IRc= Child Ingestion Rate = 100mg/day

EFc= Child Exposure Frequency = 17 days per year

EDc= Child Exposure Duration = 5 years

BWc= Child Body Weight = 15.1 kg

IRa= Adult Ingestion Rate = 10mg/day

EFa= Adult Exposure Frequency = 2 days per year

EDa= Adult Exposure Duration = 25 years

BWa= Adult Body Weight = 57.1 kg

AT1= Days Per Year = 365 days/year

AT2= Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

CF= Conversion Factor = 0.000001 kg/mg

SF= Slope Factor

RfD= Reference Dose

		NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER	l I	CANCER
CHEMICALS	CS	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)-1	(unitless)
Metals	Ţ.								
Antimony	4.80E+00	2.22E-07	1.06E-06	4.00E-04	2.66E-03	9.50E-08	4.56E-07		· · · · · · · · · · · · · · · · · · ·
Beryllium	6.70E-01	2.22E-07	1.48E-07	5.00E-03	2.97E-05	9.50E-08	6.36E-08	4.30E+00	2.74E-07
Cadmium	2.50E+01	2.22E-07	5.54E-06	1.00E-03	5.54E-03	9.50E-08	2.37E-06		
Cobalt	8.10E+00	2.22E-07	1.80E-06	6.00E-02	2.99E-05	9.50E-08	7.69E-07		WILLIAM STATE OF THE STATE OF T
Mercury	9.40E-02	2.22E-07	2.08E-08	3.00E-04	6.94E-05	9.50E-08	8.93E-09		
Thallium	1.30E+02	2.22E-07	2.88E-05	8.00E-05	3.60E-01	9.50E-08	1.23E-05	1	
Vanadium	2.70E+01	2.22E-07	5.98E-06	7.00E-03	8.55E-04	9.50E-08	2.56E-06		
Pesticides/PCBs								1	
Dieldrin	2.10E-03	2.22E-07	4.65E-10	5.00E-05	9.31E-06	9.50E-08	1.99E-10	1.60E+01	3.19E-09
Endosulfan II	2.10E-03	2.22E-07	4.65E-10	6.00E-03	7.76E-08	9.50E-08	1.99E-10	t	
Semivolatile Organics	1						1	1	
1,4-Dichlorobenzene	4.20E-02	2.22E-07	9.31E-09			9.50E-08	3.99E-09	2.40E-02	9.57E-11
1-Chloronaphthalene	4.90E-02	2.22E-07	1.09E-08	3.00E-02	3.62E-07	9.50E-08	4.65E-09	1	
2-Methylnaphthalene	1.30E-01	2.22E-07	2.88E-08	3.00E-02	9.60E-07	9.50E-08	1.23E-08		
Benzo(b)fluoranthene	4.00E-02	2.22E-07	8.86E-09			9.50E-08	3.80E-09	7.30E-01	2.77E-09
Chrysene	4.70E-02	2.22E-07	1.04E-08	1		9.50E-08	4.46E-09	7.30E-03	3.26E-11
Fluoranthene	5.90E-01	2.22E-07	1.31E-07	4.00E-02	3.27E-06	9.50E-08	5.60E-08		
Isophorone	4 70E-01	2.22E-07	1.04E-07	2.00E-01	5.21E-07	9.50E-08	4.46E-08	9.50E-04	4.24E-11
Phenanthrene	6.40E-02	2.22E-07	1.42E-08	3.00E-02	4.73E-07	9.50E-08	6.08E-09		
Pyrene	2.60E-01	2.22E-07	5.76E-08	3.00E-02	1.92E-06	9.50E-08	2.47E-08		······································
bis(2-Ethylhexyl)phthalate	5 20E+00	2.22E-07	1.15E-06	2.00E-02	5.76E-05	9.50E-08	4.94E-07	1.40E-02	6.91E-09
Volatile Organics									
2-Butanone (MEK)	7.00E-03	2.22E-07	1.55E-09	6.00E-01	2.59E-09	9.50E-08	6.65E-10		
Acetone	1.90E-02	2.22E-07	4.21E-09	1.00E-01	4.21E-08	9.50E-08	1.80E-09	†	
Carbon disulfide	4 00E-03	2.22E-07	8.86E-10	1.00E-01	8.86E-09	9.50E-08	3.80E-10		
Chlorobenzene	1.10E-01	2.22E-07	2.44E-08	2.00E-02	1.22E-06	9.50E-08	1.04E-08	1	
Methylene chloride	2 10E-03	2.22E-07	4 65E-10	6 00E-02	7.76E-09	9.50E-08	1.99E-10	7.50E-03	1.50E-12

HAZARD INDEX = 3 69E-01

TOTAL CANCER RISK = 2.87E-07

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - AVERAGE EXPOSURE (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = {[(SAc x EFc x EDc x ABS) / BWc + (SAa x EFa x EDa x ABS) / BWa] x CF} / (AT1 x AT2)

CDI = CS x AF x HIF Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF= Human Intake Factor

CDI= Chronic Daily Intake

CS= Concentration in Sediments

SAc= Child Skin Surface Area Available for Contact = 6,500 cm²

EFc= Child Exposure Frequency = 17 days per year

EDc= Child Exposure Duration = 5 years BWc= Child Body Weight = 15.1 kg

SAa= Adult Skin Surface Area Available for Contact = 2,800 cm²

EFa= Adult Exposure Frequency = 2 days per year

EDa= Adult Exposure Duration = 9 years

BWa= AdultBody Weight = 57.1 kg

AF= Adherence Factor = 1.0% for organics and 0.1% for inorganics

ABS= Absorption Factor = 0.2

AT1= Days Per Year = 365 days/year

AT2= Averaging Time (70 years for carcinogenic effects, 14 years for noncarcinogenic effects)

CF= Conversion Factor = 0.000001 kg/mg

SF= Slope Factor RfD = Reference Dose

1 1	NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER	1	CANCER
CS	HIF	CDI	RfD	QUOTIENT	HIF	CDI	SF	RISK
(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy) ⁻¹	(unitless)
4.20E+00	7 33E-09	6.16E-09	4.00E-04	1.54E-05	1.47E-09	1.23E-09		
3.60E-01	7 33E-09	5.28E-10	5.00E-03	1.06E-07	1.47E-09	1.06E-10	4.30E+00	4.54E-10
7.50E+00	7 33E-09	1.10E-08	1.00E-03	1.10E-05	1.47E-09	2.20E-09		
4.70E+00	7 33E-09	6.89E-09	6.00E-02	1.15E-07	1 47E-09	1.38E-09		
4.90E-02	7 33E-09	7 19E-11	3.00E-04	2.40E-07	1.47E-09	1 44E-11		
7 10E+01	7 33E-09	1 04E-07	8.00E-05	1.30E-03	1.47E-09	2.08E-08		
1 70E+01	7 33E-09	2.49E-08	7.00E-03	3.56E-06	1.47E-09	4.99E-09		
2.10E-03	7 33E-08	3.08E-11	5.00E-05	6.16E-07	1.47E-08	6.16E-12	1.60E+01	9 86E-11
2.10E-03	7 33E-08	3.08E-11	6 00E-03	5.13E-09	1.47E-08	6.16E-12		
4 20E-02	7 33E-08	6 16E-10			1.47E-08	1.23E-10	2.40E-02	2.96E-12
4 90E-02	7 33E-09	7 19E-11	3.00E-02	2.40E-09	1.47E-09	1.44E-11		
1 30E-01	7 33E-0 8	1.91E-09	3.00E-02	6.36E-08	1.47E-08	3.81E-10		
4.00E-02	7 33E-08	5 87E-10			1.47E-08	1.17E-10	7.30E-01	8 57E-11
4.70E-02	7 33E-0 8	6 89E-10			1 47E-08	1 38E-10	7 30E-03	1.01E-12
3 10E-01	7 33E-08	4 55E-09	4 00E-02	1.14E-07	1 47E-08	9 09E-10		
4 10E-01	7 33E-08	6 01E-09	2.00E-01	3 01E-08	1 47E-08	1.20E-09	9 50E-04	1 14E-12
6.40E-02	7 33E-08	9 39E-10	3.00E-02	3.13E-08	1.47E-08	1.88E-10		
1.90E-01	7 33E-0 8	2.79E-09	3 00E-02	9.29E-08	1.47E-08	5.57E-10		
1.40E+00	7 33E-08	2.05E-08	2.00E-02	1.03E-06	1.47E-08	4.11E-09	1 40E-02	5.75E-11
6 00E-03	7 33E-08	8.80E-11	6.00E-01	1.47E-10	1.47E-08	1.76E-11		l
1 20E-02	7.33E-08	1 76E-10	1.00E-01	1.76E-09	1.47E-08	3.52E-11		<u> </u>
3 10E-03	7 33E-08	4 55E-11	1.00E-01	4.55E-10	1.47E-08	9.09E-12		
2 10E-02	7 33E-08	3 08E-10	2 00E-02	1 54E-08	1 47E-08	6 16E-11		
2 10E-03	7.33E-08	3 08E-11	6 00E-02	5 13E-10	1.47E-08	6 16E-12	7 50E-03	4 62E-14
	4.20E+00 3.60E-01 7.50E+00 4.70E+00 4.70E+00 4.70E+01 1.70E+01 1.70E+01 2.10E-03 2.10E-03 4.20E-02 4.90E-02 1.30E-01 4.00E-02 4.70E-02 3.10E-01 4.00E-02 1.90E-01 1.40E+00 6.00E-03 1.20E-02 3.10E-03 2.10E-03 2.10E-03	4.20E+00 7.33E-09 3.60E-01 7.33E-09 7.50E+00 7.33E-09 4.70E+00 7.33E-09 4.70E+00 7.33E-09 7.10E+01 7.33E-09 1.70E+01 7.33E-09 1.70E+01 7.33E-08 2.10E-03 7.33E-08 2.10E-03 7.33E-08 4.20E-02 7.33E-08 4.20E-02 7.33E-08 4.20E-02 7.33E-08 4.70E-02 7.33E-08 4.70E-02 7.33E-08 4.70E-02 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08 1.70E-01 7.33E-08	4.20E+00 7.33E-09 6.16E-09 3.60E-01 7.33E-09 5.28E-10 7.50E+00 7.33E-09 1.10E-08 4.70E+00 7.33E-09 7.19E-11 7.10E+01 7.33E-09 1.04E-07 1.70E+01 7.33E-09 1.04E-07 1.70E+01 7.33E-09 2.49E-08 2.10E-03 7.33E-08 3.08E-11 2.10E-03 7.33E-08 3.08E-11 4.20E-02 7.33E-08 1.91E-09 4.90E-02 7.33E-08 1.91E-09 4.00E-02 7.33E-08 1.91E-09 4.00E-02 7.33E-08 6.89E-10 3.10E-01 7.33E-08 4.55E-09 4.10E-01 7.33E-08 6.01E-09 6.40E-02 7.33E-08 6.91E-09 6.40E-02 7.33E-08 8.2.79E-09 1.40E+01 7.33E-08 2.79E-09 1.40E+00 7.33E-08 2.5E-09 1.40E+00 7.33E-08 2.5E-09 1.40E+00 7.33E-08 3.9E-10 1.90E-01 7.33E-08 8.2.79E-09 1.40E+00 7.33E-08 8.2.79E-09 1.40E+00 7.33E-08 8.2.79E-09 1.40E+00 7.33E-08 8.2.79E-09 1.40E+00 7.33E-08 8.2.79E-09 1.40E+00 7.33E-08 8.80E-11 1.20E-02 7.33E-08 1.76E-10 3.10E-03 7.33E-08 4.55E-11 3.10E-03 7.33E-08 4.55E-11	4.20E+00 7.33E-09 6.16E-09 4.00E-04 3.60E-01 7.33E-09 5.28E-10 5.00E-03 7.50E+00 7.33E-09 1.10E-08 1.00E-03 4.70E+00 7.33E-09 1.10E-08 1.00E-02 4.90E-02 7.33E-09 6.89E-09 6.00E-02 4.90E-01 7.33E-09 7.19E-11 3.00E-04 7.10E+01 7.33E-09 1.04E-07 8.00E-05 1.70E+01 7.33E-08 3.08E-11 5.00E-05 2.10E-03 7.33E-08 3.08E-11 6.00E-03 4.20E-02 7.33E-08 3.08E-11 6.00E-03 4.20E-02 7.33E-08 6.16E-10 4.90E-02 4.20E-02 7.33E-08 6.16E-10 4.90E-02 4.20E-02 7.33E-08 6.89E-11 3.00E-02 1.30E-01 7.33E-08 6.89E-10 3.00E-02 4.70E-02 7.33E-08 6.89E-10 3.00E-02 3.10E-01 7.33E-08 4.55E-09 4.00E-02 4.10E-01 7.33E-08 9.3	4.20E+00 7.33E-09 6.16E-09 4.00E-04 1.54E-05 3.60E-01 7.33E-09 5.28E-10 5.00E-03 1.06E-07 7.50E+00 7.33E-09 1.10E-08 1.00E-03 1.10E-05 4.70E+00 7.33E-09 6.89E-09 6.00E-02 1.15E-07 4.90E-02 7.33E-09 7.19E-11 3.00E-04 2.40E-07 7.10E+01 7.33E-09 1.04E-07 8.00E-05 1.30E-03 1.70E+01 7.33E-09 1.04E-07 8.00E-05 1.30E-03 1.70E+01 7.33E-09 2.49E-08 7.00E-03 3.56E-06 2.10E-03 7.33E-08 3.08E-11 5.00E-05 6.16E-07 2.10E-03 7.33E-08 3.08E-11 6.00E-03 5.13E-09 4.20E-02 7.33E-08 6.16E-10 4.90E-02 7.33E-08 1.91E-09 3.00E-02 6.36E-08 4.00E-02 7.33E-08 6.89E-10 4.70E-02 7.33E-08 6.89E-10 3.10E-01 7.33E-08 6.89E-10 4.70E-02 7.33E-08 6.91E-09 2.00E-01 3.01E-08 6.40E-02 7.33E-08 6.01E-09 2.00E-01 3.01E-08 6.40E-02 7.33E-08 6.99E-10 3.00E-02 3.13E-08 6.40E-02 7.33E-08 6.99E-10 3.00E-02 3.13E-08 1.90E-01 7.33E-08 2.79E-09 3.00E-02 9.29E-08 1.40E+00 7.33E-08 2.79E-09 3.00E-02 9.29E-08 1.40E+00 7.33E-08 8.80E-11 6.00E-01 1.47E-10 1.20E-02 7.33E-08 1.76E-10 1.00E-01 1.76E-09 3.10E-03 7.33E-08 4.55E-11 1.00E-01 4.55E-10 2.10E-02 7.33E-08 4.55E-11 1.00E-01 4.55E-10 2.10E-02 7.33E-08 4.55E-11 1.00E-01 4.55E-10	4.20E+00 7.33E-09 6.16E-09 4.00E-04 1.54E-05 1.47E-09 3.60E-01 7.33E-09 5.28E-10 5.00E-03 1.06E-07 1.47E-09 7.50E+00 7.33E-09 1.10E-08 1.00E-03 1.10E-05 1.47E-09 4.70E+00 7.33E-09 6.89E-09 6.00E-02 1.15E-07 1.47E-09 4.90E-02 7.33E-09 7.19E-11 3.00E-04 2.40E-07 1.47E-09 7.10E+01 7.33E-09 1.04E-07 8.00E-05 1.30E-03 1.47E-09 1.70E+01 7.33E-09 1.04E-07 8.00E-05 1.30E-03 1.47E-09 1.70E+01 7.33E-09 2.49E-08 7.00E-03 3.56E-06 1.47E-09 1.10E-03 7.33E-08 3.08E-11 5.00E-05 6.16E-07 1.47E-08 2.10E-03 7.33E-08 3.08E-11 6.00E-03 5.13E-09 1.47E-08 4.20E-02 7.33E-08 6.16E-10 1.47E-08 1.47E-08 4.20E-02 7.33E-08 6.16E-10 1.47E-08 1.47E-08 </td <td>4.20E+00 7.33E-09 6.16E-09 4.00E-04 1.54E-05 1.47E-09 1.23E-09 3.60E-01 7.33E-09 5.28E-10 5.00E-03 1.06E-07 1.47E-09 1.06E-10 7.50E+00 7.33E-09 1.10E-08 1.00E-03 1.10E-05 1.47E-09 2.20E-09 4.70E+00 7.33E-09 6.89E-09 6.00E-02 1.15E-07 1.47E-09 1.38E-09 4.90E-02 7.33E-09 7.19E-11 3.00E-04 2.40E-07 1.47E-09 1.38E-09 1.70E+01 7.33E-09 7.19E-11 3.00E-04 2.40E-07 1.47E-09 2.08E-08 1.70E+01 7.33E-09 2.49E-08 7.00E-03 3.56E-06 1.47E-09 2.08E-08 1.70E+01 7.33E-09 2.49E-08 7.00E-03 3.56E-06 1.47E-09 4.99E-09 2.10E-03 7.33E-08 3.08E-11 5.00E-05 6.16E-07 1.47E-08 6.16E-12 2.10E-03 7.33E-08 3.08E-11 6.00E-03 5.13E-09 1.47E-08 6.16E-12 2.10E-03 7.33E-08 3.08E-11 3.00E-02 2.40E-09 1.47E-08 6.16E-12 1.30E-01 7.33E-08 1.91E-09 3.00E-02 6.36E-08 1.47E-09 1.44E-11 1.30E-01 7.33E-08 5.87E-10 1.47E-08 1.17E-10 4.70E-02 7.33E-08 6.89E-10 1.47E-08 1.17E-10 1.47E-08 1.38E-10 3.10E-01 7.33E-08 6.89E-10 1.47E-08 1.38E-10 1.40E-01 7.33E-08 4.55E-09 4.00E-02 1.14E-07 1.47E-08 9.09E-10 1.40E-01 7.33E-08 6.01E-09 2.00E-01 3.01E-08 1.47E-08 1.20E-09 1.40E-00 7.33E-08 2.79E-09 3.00E-02 3.13E-08 1.47E-08 1.20E-09 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.5E-08 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 4.55E-10 1.00E-01 1.47E-10 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.45E-08 1.47E-08 9.99E-12 1.40E-02 7.33E-08 4.55E-11 1.00E-01 1.5E-09 1.47E-08 9.99E-12 1.40E-02 7.33E-08 4.55E-11 1.00E-01 1.5E-08 1.47E-08 1.</td> <td>4 20E+00 7 33E-09 6 16E-09 4 00E-04 1 54E-05 1 47E-09 1 23E-09 3 60E-01 7 33E-09 5 28E-10 5 00E-03 1 06E-07 1 47E-09 1 06E-10 4 30E+00 7 50E+00 7 33E-09 1 10E-08 1 00E-03 1 10E-05 1 47E-09 2 20E-09 4 70E+00 7 33E-09 6 89E-09 6 00E-02 1 15E-07 1 47E-09 1 38E-09 4 90E-02 7 33E-09 7 19E-11 3 00E-04 2 40E-07 1 47E-09 1 44E-11 7 10E+01 7 33E-09 7 19E-11 3 00E-05 1 30E-03 1 47E-09 2 08E-08 1 70E+01 7 33E-09 2 49E-08 7 00E-03 3 56E-06 1 47E-09 2 98E-08 2 10E-03 7 33E-08 3 08E-11 5 00E-05 6 16E-07 1 47E-08 6 16E-12 1 60E+01 4 20E-02 7 33E-08 6 16E-10 1 47E-08 6 16E-12 2 40E-02 4 20E-02 7 33E-08 1 91E-09 3 00E-02 2 36E-08 1 47E-08 1 44E-11</td>	4.20E+00 7.33E-09 6.16E-09 4.00E-04 1.54E-05 1.47E-09 1.23E-09 3.60E-01 7.33E-09 5.28E-10 5.00E-03 1.06E-07 1.47E-09 1.06E-10 7.50E+00 7.33E-09 1.10E-08 1.00E-03 1.10E-05 1.47E-09 2.20E-09 4.70E+00 7.33E-09 6.89E-09 6.00E-02 1.15E-07 1.47E-09 1.38E-09 4.90E-02 7.33E-09 7.19E-11 3.00E-04 2.40E-07 1.47E-09 1.38E-09 1.70E+01 7.33E-09 7.19E-11 3.00E-04 2.40E-07 1.47E-09 2.08E-08 1.70E+01 7.33E-09 2.49E-08 7.00E-03 3.56E-06 1.47E-09 2.08E-08 1.70E+01 7.33E-09 2.49E-08 7.00E-03 3.56E-06 1.47E-09 4.99E-09 2.10E-03 7.33E-08 3.08E-11 5.00E-05 6.16E-07 1.47E-08 6.16E-12 2.10E-03 7.33E-08 3.08E-11 6.00E-03 5.13E-09 1.47E-08 6.16E-12 2.10E-03 7.33E-08 3.08E-11 3.00E-02 2.40E-09 1.47E-08 6.16E-12 1.30E-01 7.33E-08 1.91E-09 3.00E-02 6.36E-08 1.47E-09 1.44E-11 1.30E-01 7.33E-08 5.87E-10 1.47E-08 1.17E-10 4.70E-02 7.33E-08 6.89E-10 1.47E-08 1.17E-10 1.47E-08 1.38E-10 3.10E-01 7.33E-08 6.89E-10 1.47E-08 1.38E-10 1.40E-01 7.33E-08 4.55E-09 4.00E-02 1.14E-07 1.47E-08 9.09E-10 1.40E-01 7.33E-08 6.01E-09 2.00E-01 3.01E-08 1.47E-08 1.20E-09 1.40E-00 7.33E-08 2.79E-09 3.00E-02 3.13E-08 1.47E-08 1.20E-09 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.5E-08 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 2.79E-09 3.00E-02 1.03E-06 1.47E-08 1.5E-10 1.40E-00 7.33E-08 4.55E-10 1.00E-01 1.47E-10 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.47E-09 1.47E-08 9.99E-12 1.40E-00 7.33E-08 4.55E-11 1.00E-01 1.45E-08 1.47E-08 9.99E-12 1.40E-02 7.33E-08 4.55E-11 1.00E-01 1.5E-09 1.47E-08 9.99E-12 1.40E-02 7.33E-08 4.55E-11 1.00E-01 1.5E-08 1.47E-08 1.	4 20E+00 7 33E-09 6 16E-09 4 00E-04 1 54E-05 1 47E-09 1 23E-09 3 60E-01 7 33E-09 5 28E-10 5 00E-03 1 06E-07 1 47E-09 1 06E-10 4 30E+00 7 50E+00 7 33E-09 1 10E-08 1 00E-03 1 10E-05 1 47E-09 2 20E-09 4 70E+00 7 33E-09 6 89E-09 6 00E-02 1 15E-07 1 47E-09 1 38E-09 4 90E-02 7 33E-09 7 19E-11 3 00E-04 2 40E-07 1 47E-09 1 44E-11 7 10E+01 7 33E-09 7 19E-11 3 00E-05 1 30E-03 1 47E-09 2 08E-08 1 70E+01 7 33E-09 2 49E-08 7 00E-03 3 56E-06 1 47E-09 2 98E-08 2 10E-03 7 33E-08 3 08E-11 5 00E-05 6 16E-07 1 47E-08 6 16E-12 1 60E+01 4 20E-02 7 33E-08 6 16E-10 1 47E-08 6 16E-12 2 40E-02 4 20E-02 7 33E-08 1 91E-09 3 00E-02 2 36E-08 1 47E-08 1 44E-11

HAZARD INDEX = 1 33E-03

TOTAL CANCER RISK = 7.01E-10

TINKER AFB SITE - OFF-BASE EAST SOLDIER CREEK (AREA 4) DERMAL EXPOSURE TO CHEMICALS IN SEDIMENTS DUE TO WADING AND SWIMMING OFF-BASE CHILD AND ADULT RESIDENT - RME (CURRENT AND FUTURE USE SCENARIO)

Equation: HIF = {[(SAc x EFc x EDc x ABS) / BWc + (SAg x EFg x EDg x ABS) / BWg] x CF} / (AT1 x AT2)

CDI = CS x AF x HIF Hazard Quotient = CDI / RfD Cancer Risk = CDI x Slope Factor

Where: HIF= Human Intake Factor

CDI= Chronic Daily Intake

CS= Concentration in Sediments

SAc= Child Skin Surface Area Available for Contact = 6,500 cm²

EFc= Child Exposure Frequency = 34 days per year

EDc= Child Exposure Duration = 5 years

BWc= Child Body Weight = 15.1 kg

SAa= Adult Skin Surface Area Available for Contact = 8,600 cm²

EFa= Adult Exposure Frequency = 4 days per year

EDa= Adult Exposure Duration = 25 years

BWa= AdultBody Weight = 57.1 kg

AF= Adherence Factor = 1.0% for organics and 0.1% for inorganics

ABS= Absorption Factor = 1.0

AT1= Days Per Year = 365 days/year

AT2= Averaging Time (70 years for carcinogenic effects, 30 years for noncarcinogenic effects)

CF= Conversion Factor = 0.000001 kg/mg

SF= Slope Factor

RfD = Reference Dose

	T	NON-CANCER	NON-CANCER		HAZARD	CANCER	CANCER		CANCER
CHEMICALS	cs	HIF	CDI	RID	QUOTIENT	HIF	CDI	SF	RISK
OF CONCERN	(mg/kg)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(mg/kg-dy)	(mg/kg-dy)	(mg/kg-dy) ^{.1}	(unitless)
Metals			1						
Antimony	4 80E+00	8 06E-09	3 87E-08	4 00E-04	9 67E-05	3 45E-09	1 66E-08		
Beryllium	6 70E-01	8 06E-09	5 40E-09	5 00E-03	1.08E-06	3 45E-09	2 31E-09	4 30E+00	9 95E-09
Cadmium	2 50E+01	8 06E-09	2 02E-07	1 00E-03	2 02E-04	3 45E-09	8 64E-08		
Cobalt	8 10E+00	8 06E-09	6 53E-08	6 00E-02	1 09E-06	3 45E-09	2 80E-08		
Mercury	9 40E-02	8 06E-09	7 58E-10	3 00E-04	2.53E-06	3 45E-09	3 25E-10		
Thallium	1 30E+02	8 06E-09	1 05E-06	8 00E-05	1 31E-02	3 45E-09	4 49E-07		
Vanadium	2 70E+01	8 06E-09	2 18E-07	7 00E-03	3 11E-05	3 45E-09	9 33E-08		
Pesticides/PCBs									
Dieldrin	2 10E-03	8 06E-08	1 69E-10	5 00E-05	3 39E-06	3 45E-08	7 26E-11	1 60E+01	1 16E-09
Endosulfan II	2 10E-03	3 06E-08	1 69E-10	6 00E-03	2 82E-08	3 45E-08	7 26E-11		
Semivolatile Organics									
1.4-Dichlorobenzene	4 20E-02	8 06E-08	3 39E-09			3 45E-08	1 45E-09	2 40E-02	3 48E-11
1-Chloronaphthalene	4 90E-02	8 06E-09	3 95E-10	3 00E-02	1 32E-08	3 45E-09	1 69E-10		
2-Methylnaphthalene	1 30E-01	8 06E-08	1 05E-08	3 00E-02	3 49E-07	3 45E-08	4 49E-09		
Benzo(b)fluoranthene	4 00E-02	8 06E-08	3 22E-09			3 45E-08	1 38E-09	7 30E-01	1 01E-09
Chrysene	4 70E-02	8 06 E-08	3 79E-09			3 45E-08	1 62E-09	7 30E-03	1 19E-11
Fluoranthene	5 90E-01	8 06E-08	4 76E-08	4 00E-02	1 19E-06	3 45E-08	2.04E-08		
!sophorone	4 70E-01	8 06E-08	3 79E-08	2 00E-01	1 89E-07	3 45E-08	1 62E-08	9 50E-04	1 54E-11
Phenanthrene	6 40E-02	8 06E-08	5 16E-09	3 00E-02	1 72E-07	3 45E-08	2.21E-09		
Pyrene	2 60E-01	8 06E-08	2 10E-08	3 00E-02	6 99E-07	3 45E-08	8 98E-09		
bis(2-Ethylhexyl)phthalate	5 20E+00	8 06E-08	4 19E-07	2 00E-02	2 10E-05	3 45E-08	1 80E-07	1 40E-02	2 52E-09
Volatile Organics									<u> </u>
2-Butanone (MEK)	7 00E-03	8 06E-08	5 64E-10	6 00E-01	9 41E-10	3 45E-08	2 42E-10		
Acetone	1 90E-02	8 06E-08	1 53E-09	1 00E-01	1 53E-08	3 45E-08	6 56E-10		
Carbon disulfide	4 00E-03	8 06E-08	3 22E-10	1 00E-01	3 22E-09	3 45E-08	1 38E-10		
Chlorobenzene	1 10E-01	8 06E-08	8 87E-09	2 00E-02	4 43E-07	3 45E-08	3 80E-09		
Methylene chloride	2 10E-03	8 06E-08	1 69E-10	6 00E-02	2 82E-09	3 45E-08	7 26E-11	7 50E-03	5 44E-13

HAZARD INDEX = 1 35E-02

TOTAL CANCER RISK = 1 47E-08

APPENDIX B

SUPPORTING TABLES

APPENDIX B - SUPPORTING TABLES

B1	First Event Third Year Sediment Results (0-6 inches)
B2	First Event Third Year Second Year Sediment Results (6-12 inches)
В3	First Event Third Year Sediment Results (greater than 12 inches)
B4	Second Event Third Year Sediment Results (0-6 inches)
B5	Second Event Third Year Sediment Results (6-12 inches)
B6	Second Event Third Year Sediment Results (greater than 12 inches)
B7	First Event Third Year Surface Water Results
B8	Second Event Third Year Surface Water Results
B9	Statistical Evaluation of Analytes Tentatively Identified in Sediment Samples
B10	Maximum Detected Concentrations and Associated Sample Locations for Tentatively
	Identified Compounds in Sediment Samples
B11	Statistical Evaluation of Analytes Tentatively Identified in Surface Water
B12	Maximum Detected Concentrations and Associated Sample Locations for Tentatively
	Identified Compounds in Surface Water

TABLE B-1 FIRST EVENT THIRD YEAR LONG-TERM MONITORING SEDIMENT SAMPLING DETECTIONS 0-6 inches (bgs), January 1997

						East So	East Soldier Creek	ek							W.se.	5,113	-		
	QE01	QE02	QE03	QE04	QE05	90 3 Ò	QE07	QE08	QE09	QE10	0E11	TROI	0.00	0W0	163 H	Solution	Creek	г	
PCBs and Pesticides - Method 8080 (mg/kg)	140d 808	(mg/kg)														7	7	90 44 7	/0 (6)
Aldrin														0.037					
Aroclor 1254		10	Z 1		0.15									15000					
delta-BHC														0.01.1		†	2	6	
Findrin aldehyde																			
gamma-Chlordane																			
Heptachlor epoxide														0.70					
Semivolatile Organics - Method 8270 (mg/kg)	ethod 82	70 (mg/kg	- C																
1.2-Dichlorobenzene																			
1.4-Dichlorobenzene									0.051										
1-Chloronaphthalene											0.046								
2-Chloronaphthalene									0.22										
2-Methylnaphthalene	0.075			0.05					0.064								1		
Acenaphthene	0.77		+ -	0.15			0.55	86.0									87.0		
Anthracene	1.5	0.26	16	0.14	0.054	1.2	2.3	C.											
Benzidine																	77.6		
Benzo(a)anthracene	1.9	0.83	6.2	0.52	0.13	† 'S	1.6	7.3	760.0			0.1	0.055	-	90.0	-	3	0,000	
Benzo(a)py rene	1.5	0.87	7	0.47	0.15	8.9	Ε	7.3	0.13			0.11	0.073	17	0.35	- 5	6,6	860.0	
Benzo(b)fluoranthene	1.2	66 ()	e. ∞	6110	0 18	8.8	13	9.6	0.11			0.17	0.088	0	0.35		7. 0	0000	
Benzo(g.h.i)perylene	0.83	0.55	3.9	0.32	0.12	3.8	7.	4.5	0.094			0.075	0.016	0.8.1	71.0		Ŧ, C	77 (
Benzo(k)tluoranthene	7.7	92.0	5.	0.47	0.15	7	8.6	6.8	0.13			0.17	960 0	T C	0.10		2 5	240.0	
bis(2-1/thythexyt)phthalate	67.0	26	9 -		0.047	6.4	17	7.5	3.3	5.2	0	90.0	5800		2	1 -			1
Butyl benzyl phthalate															-	5	7 [9 0	
Chrysene	C±	_	0 8	0.73	0.23	9.3	- 2	9.2	0.16		0.044	0.15	0.076	1	03.0	,	7 -		
Di-n-buty I phthalate													0.2				-	S O	T
Di-n-octyl phthalate																	11.6.6		T
Dibenzta.h)anthracene	150		١ ٠	0.12		1.5	61	1 6						55.0		-	000	+	I
Dibenz(a.j)acridine							0.33										1000		Ī
Dibenzofuran	65.0		0.87	0.13	0.041		0.35	0.58									-		
Fluoranthene	†5	2.7	25	61	69.0	2.1	3.2	25	790	0.83	0.29	0.31	71 0	9 6	89.0	- "		00.00	Ī
Fluorene	7.0		-	0.14		0.55	-	+									, , ,	27	7/00
Indeno(1.2.3-ed)pyrene	0.85	V.	7	0.3	0.11	3.8	4.6	4.3	0.067			690.0		18.0	0.17	17		1100	T
Naphthalene	0.19		-	0.26	680.0				0.046								09.0		
Phenanthrene	サビ	0.84	<u>×</u>	<u>~</u>	0.62	 C.	Υ.	51	0.24			0.16	640.0	1.3	0.36	6.1) I c	<u>~</u>	
Pyrene	+		1.7	9"	0.50	15	17	<u>v.</u>	0.25	0.26	0.085	0.24	0.13	7	0.57	× (1	1,5	900	0.070
Total Metals - Methods 6010/7060/7471/7740 (mg/kg)	0/2060/7	471/7740	(mg/kg)																
																	_	_	=

TABLE B-1 FIRST EVENT THIRD YEAR LONG-TERM MONITORING SEDIMENT SAMPLING DETECTIONS 0-6 inches (bgs), January 1997

						East Sol	East Soldier Creek	7							W.	Wort Colding Car			
	QE01	QE02	QE03	QE04	QE05	903Ò	QE07	QE08	QE09	QE10	QEII	TR01	OW01	OW02	0.00	FUMO	OWO	70.WO	20.110
Aluminum	7430	750	2770	5600	7630	6030	0661	9210	0909	1790	4360	9580	14200		6250				70WD
Antimony																			13500
Arsenic	2.1	3.1		2.9	5.5	9.6	9 [6.4	2.7	68.0	2.3	3.1	2.3	4.7	1.5	8.5	19	-	-
Barium	1300	388	1200	830	683	721	358	645	726	177	3200	430	437	929	125	423		708	53.1
Bery Ilium	0.53			0.45	0.6			0.76	0.46			0.42	_	1 7	0.32	60			0.7
Cadmium		2.3	13.3			17.4	22.6	50.1	25.5	3.9	25.2	75.5	5.3	403	7	Sec.	77		
Calcium	27000	93300	22200	13600	0519	36600	117000	37000	7310	141000	52900	7580	34200	45100	2950	15800	10	7.1000	7300
Chromium	36.1	801	2800	66.7	5.61	276	210	318	236	31.6	220	543	32.6	744	27.4	1150		177.7	010
Cobalt	6.2	† 6	181	6.9	S	9.6	\$0.4	7.11	59	1.2	7	9	9.3	19.5	37.7	61.7		6 1 4	5 10 00
Соррег	12.5	101	978	9.2	∞ ∞	581	135	520	26.4	∞	34.2	34.1	7.7	761	77.1	870	17	1.0	1 (1
Iron	11500	13300	7370	10600	13600	10200	8250	14300	12300	3730	14400	15300	14700	24400	9580	15800	05.69	† C C C C	71 1000
l ead	13.3	349	\$28	20.5	12.2	190	174	124	37.3	38.1	42.3	7	50.6	202	659	XOC	250	7 1	11111
Magnesium	2780	4410	3550	0861	1690	4430	3190	5040	2900	0661	27100	4740	8460	14800	2620	5870	5010	7630	20.7
Manganese	353	356	143	338	181	214	110	228	1490	161	1780	356	585	677	124	478	233	751	0151
Mercury	0.1	0.24	3.7	0.25	0.047	0.54	0.26	t'0	0.17	0.077	860.0	0.45	0.039	ο Χ.ς. Ο	38.0	0.33	250.0		
Moly bdenum		12.3	× 1+			1.61	13.6	14.2			5.7			8	2	717	0.1.0		
Nickel	24.3	166	67	9.7	12.3	88.8	87.6	92.5	58.7	10.6	5'96	136	33.9	685	1430	070	150	2,0	.4.7.0
Potassium	870	133	350	607	618	698	764	1200	962	262	662	1390	2090	2730	608	1670	000	002	077
Selenium			7.3											-	89.0	3.0		MAC.	0071
Silver		2.9	7			- ×	14.2	9	3.1		×.	6.9	C.1	24.8	C 06	× (×	15.7	-	
Sodium																			
Thallium	62.7		72.6	39.3						126	71.2		65.3	127					
Vanadium	15.9	18.6	6.28	61	18.9	43.5	213	43	25.2	5.3	161	22.4	25.2	82.1	33.2	77.8	2	=	3.5.5
Zine	38.8	89.2	463	3.	313	194	258	406	48.8	20.1	516	501	81.5 5.18	1180	482	0+11	- x		17.6
Volatile Organics - Method 8260 (mg/kg)	8260 (m	g/kg)																	
1.1.2.2-Fetrachloroethane		0.0027																	
2-Butanone (MFK)			0.0074			0.046	0.0029	0.047	0.0036	0.0029	0.0046	0.0034		0.014	0.011				
Acetone	0.01	0.0062	0.034	0.012	800.0	0.26	0.013	0.26	0.016	0.011	910.0	0.015		0.059	0.044	0.055	0.0019		
Acrylonittile													0.015						
Carbon disultide			0.0019								8500.0				0.0057				
Chlorobenzene						0.0059		†1 O	0.0048										
Chloromethane			0.0038			0.025								t00 0					
Ethy Ibenzene			0.0081			0.0075	0.0013								\$100.0				T
Methylene chloride		0.0015	0.0019										0.0016	0.005	0.0023		0.0018	0.00	
Styrene		61000	0.012				0.036								0.0032	(C)			
Foluene															0.034				
																			=

TABLE B-1
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
0-6 inches (bgs), January 1997

						East Sole	East Soldier Creek	4							N PST S	West Soldier Creek	700		
	QE01 ()E:02	QE03	QE04	OE05	903Ç	QE07	QE08	QE09	QE10	QEH	TR01	10.WO	OW02 T	0W03	O FOMO	W.05 1	70.110	111.07
Winy Lobby wide															2	2	00.00	00.4	1046
v III. CIII.										_					0.0028				
Clears floatsh																			
												_							

TABLE B-2
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
6-12 inches (bgs), January 1997

			East	East Soldier Creek	Sreek				West	West Soldier Creek	Preek	
	QE02	QE06	QE07	QE08	QE09	QE10	QEII	QW01	QW02	OW03	0W04	OW07
PCBs and Pesticides - Method 8080 (mg/kg)	0808 por	(mg/kg)										y
Aldrin												
Aroclor 1254	+1									82	C.	
delta-BHC		1.2										
Endrin aldehyde		0.042										
gamma-Chlordane		0.036										
Heptachlor epoxide		3.3										
Semivolatile Organics - Method		8270 (mg/kg)										
1.2-Dichlorobenzene											2	
1,4-Dichlorobenzene												
1-Chloronaphthalene					0.23		0.049					
2-Chloronaphthalene					0.053							
2-Methy Inaphthalene		0.33									0.41	
Acenaphthene	0.43	0.35	0.72	0.044							98.0	
Anthracene	0.81	0.77	6.1	0.072							<u> </u>	
Benzidine												
Benzo(a)anthracene	1.6	2.9	4.7	0.29						9.1	4.7	
Benzo(a)pyrene	1.6		S	0.31						1.8	4.6	
Benzo(b)fluoranthene	8.1	2.9	5.9	0.34	0.05		0.04			2.2	5.6	
Benzo(g.h.i)perylene	6.0		1.9	0.15	0.05					0.85	2.1	
Benzo(k)fluoranthene		2.8	4.8	0.28			0.039			2.3	5.5	
bis(2-Ethylhexyl)phthalate	4.4	19	1.3	3.2	0.55	1.1	4.9		0.25	8.7	9.1	
Butyl benzyl phthalate												
Chrysene	1.9	+	6.3	0.44	0.062		0.047			2.1	6.1	
Di-n-buty l phthalate												
Di-n-octyl phthalate										0.5		
Dibenz(a.h)anthracene	0.27	0.36	6.0	0.057							0.74	
Dibenz(a,j)acridine												

TABLE B-2
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
6-12 inches (bgs), January 1997

			East	East Soldier Creek	Sreek				West	West Soldier Creek	Creek	
	QE02	QE06	QE07	QE08	OE09	QE10	QEH	QW01	QW02	QW03	QW04	QW07
Dibenzofuran	0.24		0.43								0.79	
Fluoranthene	5.5	01	81	1.3	0.35	0.53	0.3			3.6	13	
Fluorene	0.47	0.52	1.2	0.057							_	
Indeno(1,2,3-cd)pyrene	0.79	1.2	6'1	0.15						0.82	2.2	
Naphthalene											1.7	
Phenanthrene	2.3	4.7	9.6	0.5	0.067		0.064			2.2	=	
Pyrene	3.8	7.9	9.6	0.67	0.11	0.28	0.11			. 3.3	=	
Total Metals - Methods 6010/7060/7471/7740 (mg/kg	-2/0902/0	171/7740	(mg/kg)									
Aluminum	1320	7620	1670	0161	4710	3030	2880	12400	5020	11600	13800	10700
Antimony												
Arsenic	2.5	7.2	3.2	3.4	1.4	1.3	4.7	1.7	1.8	4.6	5.9	2.6
Barium	168	657	81.6	168	328	176	1790	197	179	325	401	416
Beryllium		0.63			0.35			8.0	0.29	0.81	0.71	0.48
Cadmium		14.8	7.4	12.2	7.4	7.8	10.2		2.3	112	E	
Calcium	121000	33300	119000	48600	2290	00899	00296	20300	5180	5230	5840	2000
Chromium	139	261	41.3	107	48.4	57.8	125	1.91	79.3	0111	721	18.1
Cobalt	21.1	10.2	2.8	6.7	4.3	2.2	8.1	8	5.3	991	42	5.6
Copper	109	436	52.5	40.4	9.6	61	23	18.6	11.7	2010	78	∞
Iron	7850	11400	4600	3420	7760	4050	18500	12800	0999	13000	14300	13200
Lead	122	124	24.4	18.5	9.91	45.5	30.4	7.2	6.7	422	172	12.4
Magnesium	6120	5300	5790	1580	1360	5220	22000	10600	2270	3850	2560	1710
Manganese	310	242	210	801	216	192	0681	517	70.2	158	812	313
Mercury	0.34	0.35	0.1	0.042	0.036	0.036	0.1		0.081	0.55	0.24	
Molybdenum	28.2	27.3					7.2		3.4	297	16.4	
Nickel	319	7.3	20.9	32.9	13.8	12.8	64.7	8.81	57.8	6470	410	11.5
Potassíum	193	1010	232	279	581	393	435	2050	735	1130	1420	1050
Selenium		0.88								10.3	1.3	
Silver		3.9	3.9	1.5			3.4		0.87	725	23.3	

TABLE B-2
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
6-12 inches (bgs), January 1997

			East 9	East Soldier Creek	reek				West	West Soldier Creek	reek	
	QE02	QE06	QE07	QE07 QE08	QE09	QE10	QE11	QW01	QW02	QW03	QW04	QW07
Sodium												
Thallium	126					54.6	39.3	53.9		74.2		
Vanadium	10.1	46	6.8	8.6	13.6	9.7	15.3	16.2	117	114	45.2	25.7
Zine	9.39	362	52.4	45.1	29.8	47.2	45.5	50.3	44.8	2310	427	21
Volatile Organies - Method 8260		(mg/kg)										
1.1.2.2-Tetrachloroethane												
2-Butanone (MEK)	0.0034	0.037	0.0028		0.0048	0.0052	0.0043		0.0073	0.028		
Acetone	0.017	0.19	0.011	0.062	0.019	0.021	0.019		0.027	680.0		0.025
Acrylonitrile												
Carbon disulfide	8100.0	0.0087				0.0013	0.0045					
Chlorobenzene	0.0074	0.011		0.91	0.021							
Chloromethane												
Ethylbenzene	0.0025									0.053	0.013	
Methylene chloride	9100.0							0.0017	0.0018	0.017		
Styrene	0.0031		0.0045							0.031	0.33	
Toluene									0.018	0.021		
Vinyl chloride	6.0013											
Xylenes (total)	8100.0	1900'0										

TABLE B-3
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
Greater than 12 inches (bgs), January 1997

		East Sold	East Soldier Creek			West Sold	West Soldier Creek	
	0E06	OE07	OE09	QE10	10MÒ	QW03	QW04	QW07
	1.0-1.5 feet	3.0-3.5 feet	1.0-2.0 feet	2.0-3.0 feet	1.0-1.5 feet	1.0-2.0 feet	2.0-2.5 feet	3.0-3.5 feet
PCBs and Pesticides - Method 8080	od 8080 (mg/kg)	(g)						
Aldrin								
Aroclor 1254						15	01	
delta-BHC								
Endrin aldehyde								
gamma-Chlordane								
Heptachlor epoxide								
Semivolatile Organics - Method 8270	thod 8270 (mg/kg)	/kg)						
1.2-Dichlorobenzene							9.1	
1,4-Dichlorobenzene								
1-Chloronaphthalene		0.1						
2-Chloronaphthalene			0.1					
2-Methy Inaphthalene							0.85	
Acenaphthene			0.066				1.1	
Anthracene	0.32		0.079				9.1	
Benzidine			And the second s			0.22		
Benzo(a)anthracene	1.3	0.063	0.36			0.33	5.7	
Benzo(a)pyrene	1.6	0.054	0.39			0.36	5.8	
Benzo(b)fluoranthene	1.6	0.044	0.45			0.53	5.5	
Benzo(g.h.i)perylene	0.67	0.046	0.28			0.16	2.2	
Benzo(k)fluoranthene	1.5	0.055	0.35			0.5	9.5	
bis(2-Ethythexyt)phthalate	1.8	0.45	0.27	0.31		1.2	19	
Buty I benzy I phthalate								
Chrysene	8.1	0.088	0.52			0.46	7	
Di-n-buty I phthalate	0.3		0.044					
Di-n-octyl phthalate								
Dibenz(a.h)anthracene			0.095				0.76	

TABLE B-3
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
Greater than 12 inches (bgs), January 1997

S S S S S S S S S S S S S S S S S S S	.5 feet 1.0-2.0 feet 1.0-2.0 feet 1.0-2.0 feet 1.3 0.053 0.053 0.27 1.1 0.28 1.5 0.77 0.9 g/kg)	QE10 2.0-3.0 feet 0.14	QW01 1.0-1.5 feet	QW03	QW04	QW07
acridine an 1.0-1.5 feet an 1.0-1.5 feet an 1.0-1.5 feet 3cd)pyrene 1.0-5 1.	-	2.0-3.0 feet 0.14	1.0-1.5 feet	1.0-2.0 feet	2 0.2 5 feat	
an 4.4 an 4.4 ne 3-cd)pyrene 0.65 ne 3 als - Methods 6010/7060/74 als - Methods 6		0.14		1001 61- 61-	1331 0.7-0.7	3.0-3.5 feet
an 10.65 3-cd)pyrene 10.65 10.65 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00		0.14				
3-cd)pyrene 0.65 ne 2.8 ne 2.8 3 lis - Methods 6010/7060/74 11s - Methods 6		0.14				
as-cd)pyrene 0.65 ne 2.8 3 ils - Methods 6010/7060/74 19.3 19.3 10500 10500 11070 11				0.84	21	
als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Als -					7.	
als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Methods 6010/7060/74 als - Al				0.17	2.2	
3 18 - Methods 6010/7060/74 1910 3.6 498 498 6.65 0.65 19.3 19.3 10.7 10.7 10.7 10.5 10.					2.1	
3.6 498 3.6 498 6.65 19.3 19.3 110.7				0.44	14	
3.6 3.6 498 0.65 19.3 18.7 10500 10500 10500 107 107 108 108 108 108 108 108 108 108	g/kg)			0.78	12	
3.6 498 0.65 0.65 19.3 19.3 16.7 10.7 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5						
3.6 498 0.65 19.3 15100 549 16.7 107 107 10500 318	000 5000	6830	17400	3010	7320	8000
3.6 408 0.65 19.3 15100 549 16.7 10.7 10500 318					1 11.4	
498 0.65 19.3 15100 549 16.7 107 10500 318	.1 2.3	1.4	0.62	1.3	6.7	3.9
0.65 19.3 15100 549 16.7 107 10500 318	74 276	184	67.4	6.3	177	457
19.3 15100 549 16.7 107 10500 318 3382	28 0.29		1.5		0.34	0.82
15100 549 16.7 107 10500 318 3710	.9 51.8	2.4		5.6	212	
\$49 16.7 107 10500 318 3710	90 4400	26200	27000	0009	14600	1920
16.7 107 10500 318 3710 382	8 142	31.3	19.5	67.5	4020	23.9
107 10500 318 3710 382	.8 4.4	3.9	13.3	12	191	6
318 3710 382	19.8	7.6	37.3	52.9	991	13.7
318 3710 382	9	9650	18300	5630	15400	20900
382	.6 55	13	8.1	24	934	4.9
382	2160	2690	23400	2150	2900	2890
	53 224	185	1080	191	7430	258
Mercury 0.31 0.08	0.1	0.045		0.11	0.22	
Molybdenum 4.9				1.61	6.04	
75.5	22.6	18.7	32.9	380	0611	24.3
Potassium 491	91 404	964	3520	487	864	908

TABLE B-3
FIRST EVENT THIRD YEAR LONG-TERM MONITORING
SEDIMENT SAMPLING DETECTIONS
Greater than 12 inches (bgs), January 1997

QE06 QE07 QE09 QE10 Q Selenium 1.0-1.5 feet 3.0-3.5 feet 1.0-2.0 feet 2.0-3.0 feet 1.0- Silver 2.9 2 1.0-1.5 feet 1.0-2.0 feet 2.0-3.0 feet 1.0- Sodium 2.9 2 46.3 6 6 6 Pandium 22.7 13.4 13.7 17.8 1 1 6 7 7 7 7 7 7 <th>East Soldier Creek</th> <th></th> <th>West Sold</th> <th>West Soldier Creek</th> <th></th>	East Soldier Creek		West Sold	West Soldier Creek	
1.0-1.5 feet 3.0-3.5 feet 1.0-2.0 feet 2.0-3.0 feet 2.9	<u> </u>	QW01	QW03	QW04	QW07
2.9 2 46.3 46.3 46.3 13.4 13.7 17.8 18.1 16.8 18.1 16.5 18.1 16.5 18.1 16.5 18.1 16.5 18.1 16.5 18.1 16.5 16.5 18.1 16.5		1.0-1.5 feet	1.0-2.0 feet	2.0-2.5 feet	3.0-3.5 feet
2.9 2.9 2.9 2.9 46.3 46.4 46.3 46.4 46.3 46.4 46.3 46.4 46.3 46.4 46.3 46.4 46.3 46.3 46.3 46.3 46.3 46.4 46.3 46.3 46.4 46.3 46.3 46.3 46.3 46.4 46.3			0.92	2.8	
13.7 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.4 146.3 146.4 146.3 146.4 146.4 146.4 146.4 146.3 146.4 146.4 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.3 146.4 146.4 146.3 146.4 146.4 146.3 146.4 146.4 146.4 146.3 146.4	2		21.8	105	
13.7 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.3 146.4		495			
nics - Method 8260 (mg/kg) 12.1 76.8 18.1 nics - Method 8260 (mg/kg) 12.1 76.8 18.1 nloroethane 0.0026 0.0081 0.0058 1EK) 0.013 0.0026 0.0081 de 0.067 0.014 0.0058 de 0.0083 0.054 0.054 s 0.0083 0.054 0.054 oride 0.0067 0.0067 0.0067	46.3	64.9	45.1	62.4	
nics - Method 8260 (mg/kg) 12.1 76.8 18.1 nloroethane 0.0026 0.0081 0.0058 1EK) 0.013 0.0026 0.0031 0.0058 de 0.0067 0.014 0.031 0.0058 de 0.0083 0.054 0.054 st 0.01de oride		17.3	15.5	56.9	39.9
nics - Method 8260 (mg/kg) Horoethane 0.0036 0.0081 1EK) 0.067 0.014 0.0058 de 0.0083 0.054 st 0.0083 0.054 oride 0.0067 0.054		39.4	901	590	26.4
HEK) 0.0026 0.0081 HEK) 0.0057 0.004 0.0081 de 0.9083 0.054 s oride 0.9083					
HEK) 0.013 0.0026 0.0081 0.067 0.014 0.031 0.0058 de 0.0083 0.054 state 0.0083 0.054 oride 0.014 0.0081					
de 0.0083 0.054 0.054 0.0058 0.0058 0.0068 0.00683 0.0054 0.00683 0.0054 0.0068	0.0081		0.0062	0.0034	
de 0.9083		0.005	0.023	0.016	0.0034
de 0.9083					
5 0.0083 e.p.					
Chloromethane Ethylbenzene Methylene chloride Styrene Toluene Vinxl chloride	0.054				
Ethylbenzene Methylene chloride Styrene Toluene Vinxl chloride					
Methylene chloride Styrene Toluene Vinyl chloride			0.0019		
Styrene Toluene Vinxl chloride			0.0019	0.0022	
Toluene Vinyl chloride			0.0024	0.0047	
Vinyl chloride			0.0024		
Xylenes (total) 0.0015					

TABLE B-4 SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS 0-6 inches bgs, July 1997

						Sold Sold	East Soldier Creek								17.	11.3	-		
	OE01 OE02		OFO3	F030	OF05	90.10	101.01	OF08 OF09		OFIO	1130	1001		0.110	w est	west Soldler Creek	reek		
PCBs and Pesticides - Method 8080 (mg/kg)	1 8080 (n	-				- 11	$\neg \vdash$	2				7	10 40	70 W O	50 40	000	0000	90 M O	QW07
1.41000						60.0			0.042										
4,4-1)[)[5800.0				
Aldrim								0.13							FF00 0				
alpha-C'hlordanc	0.014														t too o				
Aroclor 1254		1.7	3.6	0.054	0.25									0.088	0.10	590.0		-	
Aroclor 1260	890														7	000.0	0.20	-	
Dieldrin											0.0038				00.00				
I'ndosulfan II						6,093			0.05		0.0024								
gamma-Chlordane	0.025																		
Heptachlor																			
Heptachlor epoxide															0.0061				
Semivolatile Organics - Method 8270 (mg/kg)	d 8270 (mg/kg)																	
1.2-Dichlorobenzene			0.22																
1.3-Dichlorobenzene																			
1,4-Dichlorobenzene									0.13										
1-Chloronaphthalene							91.0												
2.4-Dimethy lphenol									0.064										
2-Chloronaphthalene						98.0			6.0										
2-Methy Inaphthalene			0.47			0.2	0.048	0.18											
3-Methylcholanthrene								0.25											
Acenaphthene			2.2		0.14	0.26	0.079	0.78	0.24										
Acenaphthy lene															0.043				
Acetophenone						0.11													
Anthracene			-+ - +		6.33	0.44	† 1 ()	2.7	0.26						0.061				
Benzota)anthracene	0.43	9.1	7.1		1.2	<u>v. </u>	0.54	6.9	_						0.33	0.11		0	0.036
Benzo(a)pyrene	0.54	9"	5.9		16.0	7	0.54	9.3	1.3					0.055	0.45	0.12		160.0	0.05
Benzo(b)fluoranthene	0.46	1.7	9.9		-	2 -	19:0	=	7					0.052	0.62	0.11		0.072	990.0
Benzo(g.h.i)perylene	0.65		۲,		0.24	0.76	0.33	4.3	9.0					0.055	0.35	0.15		0.082	
Benzo(k)fluoranthene	0.53	-	o +		~	C1	61.0	12	1.4					0.053	0.39	0.12			0.053
Benzoic acid	0.28																		T
bis(2-1 thy lhexy Lybhthalate	2.8	0.83	0.86		φ.		0.47	8.9	0.42		0.1				0.14	190.0		200	8100
Butyl benzyl phthalate								0.51											
Chrysene	890		7.9		Ę,	2.2	0.76	1.2	1.7					890.0	0.47	0.15		0.12	0.074
Di-n-butyl phthalate									890.0										
Dibenz(a.h)anthracene	C 0				= =		\dashv	-	0.17						0.088				
Dibenzeturan		-	17.1		0.067		0.051		81.0										
Huoranthene	-	+ 0	-	0.053	5.0	÷.	1.7	7.	8		0.086	\exists		0.093	0.62	0.25	0.087	0.27	0.13

TABLE B-4 SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS 0-6 inches bgs, July 1997

						Sast Sold	East Soldier Creek								11.00	17.5			
	QE01	QE02	QE03	QE04	QE05	0E06	QE07	QE08	QE09	QE10	QEH	I'R01	OW01	OW02	0.00	O3 LOWOL LOWO	OWO	70 110	10.110
Fluorene			2.5		0.11	0.24	680.0	1.2	0.26			1		,		7	60 11		OWO
Indeno(1,2,3-ed)pyrene	0.74	-	2.3		0.28	0.83	0.34	4.5	0.59					0.047	0.31	0 2		2100	
Isophorone																		1+0.0	
Naphthalene			2.1			0.14	† 1	61.0	1.3										
Phenanthrene	# 0	3.7	91		1.7	7.1	1.3	13	5.6					0.041	0.23	0 13		2	1000
Pyrene	0.74	3.6	13	0.058	22	3.5	=	91	÷.č					0.084	0.45	C	1300	21.0	7 1 0
Total Metals - Methods 6010/7060/7471/7740 (mg/kg)	+ 2/0902/0	71/7740 ((mg/kg)														+c'0 0	01.0	
Aluminum	8310	2440	3640	0859	3130	8210	0919	7770	3680	0919	3970	4830	8360	1950	0800	1,5000	25711	0.500	
Antimony				4.6			3.6	7.6			∞ †				CHO.	177777	0/67	0007	0803
Arsenie	2.7	5.3	2.6	8 -	5.1	7	5.1	4.3	2.8	1.2	5	97	1.7	-	۶۲	3.6	-	7 3	
Barium	2370	613	559	583	397	746	167	751	396	254	244	368	308	727	100	5.10	>00	8.1	57
Beryllium	0.76		0.55	\$9.0	0.32	89.0	0.71	0.82	9.0	29.0	9.0	0.56	0.97	0.50	(8.0	900	507	0.7	0
Cadmium	10.2	=			5.2	31.6	55.1	38.2	837		16.9	0.63	17	0.72	3.4	101	- C	120	G+ O
Calcium	21900	14000	31100	8030	15800	27800	2140	36300	42700	1660	55000	1370	12200	27600	50900	0299	0.07	0 01	
Chromium	1700	804	388	9.81	2.68	282	226	306	886	12.9	661	17.3	25.6	15.7	193	150	00711	1010	Dogs
Cobalt	13.7	36.6	111.7	7.6	9.3	12.1	5.2	12	14.3	۳.	7.9	× 7	∞	5.4	9 (1	9	1 1 1 1	+0.	
Соррег	421	188	85.1	9111	2'68	450	18.2	348	001	6.6	23	7.1	20.5	10.9	316	15.1	6.3	† W	0 0
Iron	14000	0829	00441	12200	06290	12500	0088	13300	6920	8620	12400	0011	12100	0096	14900	15300	13500	0.56.4	8.0
Lead	301	415	27.8	1.01	93.2	160	38	173	60+	8.9	47.9	- ×	33.8	17.1	54.4	0.87	200	00.00	005
Magnesium	6920	2560	3570	0161	0861	4280	1700	4510	2120	1250	23900	920	5660	7400	4230	3330	3050	20.07	. I
Manganese	235	601	1830	297	220	250	222	244	205	215	1660	177	733	t6t	424	508	032	701	700
Mercury	3.4	8.3	0.36		0.11	0.4	0.11	0.45	0.32		0.023				0.024	0.042		100	X-1
Molybdenum	4.4	14.5	57	8.11	5.7	6.8	~	9.01	7.9	2	6.1				3.9	5.5	-	610.0	
Nickel	0.80	\$0.8	64.2	16.2	8:0+	601	176	114	62.7	10.3	65.7	6.3	35.2	17.2	107	08	- X	\$ 1.5	1 3
Potassium	808	363	588	969	455	1270	982	1270	551	845	537	092	1270	80.5	1420	1430	969	001	5 2
Selenium		1.7				0.81			0.78										
Silver	8.2	8.0	9.1	+ 0	2.6	7.3	†	8.0	15.2		2.7	0.47	16:0	0.47	1.6	7.6	0.56	~	(5.0
Sodium							<u>«</u>				159	153		133			245		177
Thallium			25.3	18.7						1.7	37.8		183	13.6					
Vanadium	37.8	27.7	23.2	20.3	6 † 1	¥0.4	13.3	45.8	15.4	21.8	26.6	20.9	30.7	23.3	30.2	32.7	23.4	15.1	14.4
Zine	<u>\$1\$</u>	671	52.9	21.5	103	341	69	486	336	17.1	39.7	5.	18.2	32.7	173	1 66	23.6	107	0 0
Volatile Organics - Method 8260 (mg/kg)\	260 (mg/	\(<u>\g</u> \)															0.00	0/	5 6
1.1-Dichloroethane			0.0016															+	
2-Butanone (MFK)		10.0			0.0025	0.026	0.0051	0.048			0.0036	-							T
Acetome	0.018	0.037	0.023	\$600.0	0.013	0 1	0.023	0.23 0	0.0092	0.015	0.014				0.0057			0.0056	
Веплене		\rightarrow						0.021										D. Carrier	T
Carbon disulfide		0.0092	0.0015																
Chlorobenzene			0.020		1	0.0092	0.023	2.1	0.01		6100								

TABLE B-4 SECOND EVENT THIRD YEAR MONTFORING SEDIMENT DETECTIONS 0-6 inches bgs, July 1997

-						East Soldier Creek	ier Creek	٠.							West	West Soldier Creat	Croak		
	QE01	2E01 QE02 QE03 QE04 QE0	QE03	QE04	v.	QE06	QE07	QE08	QE09	QE06 QE07 QE08 QE09 QE10 QE11 TR01 OW07 OW03 OW03 OW06 OW16 OEH	TR01	OW01	OW02	OWO	OWO	O.I.O.	70.100	100	
Methylene chloride					1,000.0	0.0051	1000 01000	1000		1,000,0					2	7	co u >	90 42	
					7000	0.0001	0.001	0.0		0.0021				_	1000				
Lotuene											_								
			01000																
THEIROGORDENC			6100.0				_								_				
(Xylenes (total)																			
															_				
																		_	

TABLE B-5
SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS
6-12 inches bgs, July 1997

			East Sol	East Soldier Creek	i.k			Wes	West Soldier Creek	Creek	
	QE06	QE07	QE08	QE09	QE10	QEH	QW01	QW02	QW03	QW04	OW07
PCBs and Pesticides - Metho	lethod 8080 (mg/kg)	ng/kg)									
ddd-t*t	0.076										
4,4-DDE											
Aldrin											
alpha-Chlordane											
Aroclor 1254									0.24		
Aroclor 1260											
Dieldrin											
Endosulfan II	0.079										
gamma-Chlordane											
Heptachlor											
Heptachlor epoxide											
Semivolatile Organics - Meth	Method 8270 (mg/kg)	(mg/kg)									
1.2-Dichlorobenzene		0.13									
1,3-Dichlorobenzene			0.38								
1,4-Dichlorobenzene			1.1			0.042					
I-Chloronaphthalene				90.0							
2,4-Dimethylphenol											
2-Chloronaphthalene	0.29	0.065		190.0							
2-Methy Inaphthalene		0.37	4.5			0.13					
3-Methylcholanthrene											
Acenaphthene		0.28	0.21				0.044				
Acenaphthylene											
Acetophenone											
Anthracene	0.43	0.44					0.078				
Benzo(a)anthracene	1.3	1.7	0.33	0.1			0.33		0.086	0.097	
Benzo(a)pyrene	5:1	6.1	0.31	0.12			0.27		0.095	0.12	
Benzo(b)fluoranthene	2.3	<u>5.1</u>	0.37	0.15			0.23		0.12	0.12	
Benzo(g.h.i)pery lene	0.91	0.96	0.43	0.081			0.21		0.13	0.17	

TABLE B-5
SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS
6-12 inches bgs, July 1997

			East Sol	East Soldier Creek	3k			Wes	West Soldier Creek	Proof	
	QE06	QE07	QE08	QE09	QE10	QE11	QW01	QW02	OW03	0W04	OW07
Benzo(k)fluoranthene	8.1	2	0.3	0.13			0.31			0 1.4	
Benzoic acid											
bis(2-Ethylhexyl)phthalate	9.9	3.5	+-	8.1			0.048		0.089	690.0	
Butyl benzyl phthalate											
Chrysene	2.3	1.2	0.63	0.18			0.39		0.13	0.17	
Di-n-butyl phthalate		0.05									
Dibenz(a,h)anthracene	0.33	0.36								0.057	
Dibenzofuran		0.18							,		
Fluoranthene	4.7	4.8	6.5	-			69.0		0.21	0.27	
Fluorene		0.26	0.28								
Indeno(1.2,3-cd)pyrene	0.81	_	0.31	9/0.0			0.19		0.11	0.14	
Isophorone						0.47					
Naphthalene		7	1.6	0.047							
Phenanthrene	2.4	3.5	1.2	0.12			0.45		0.12	0.21	
Pyrene	2.9	2.9	1.1	0.25			0.59		0.19	0.27	
Total Metals - Methods 6010/	7060/747	010/7060/7471/7740 (mg/kg)	ıg/kg)								
Aluminum	8940	4530	5420	1740	5670	4270	0889	2280	6940	8160	7350
Antimony	6.2		6.1								
Arsenic	4.8	8.1	寸	1.5	0.83	1.7	1.5	0.81	2.4	2.7	0.99
Barium	655	414	166	218	596	999	240	63.2	542	521	364
Beryllium	0.72	0.59	0.61	0.27	0.63	0.61	8.0	0.36	0.78	0.85	0.93
Cadmium	27.9	255	88.2	33.4			0.57		3.6	11.5	
Calcium	21000	5370	14800	67800	1490	1780	14800	4360	00091	6450	16600
Chromium	273	989	1210	180	13	14.5	15.1	9.01	59.5	375	28.5
Cobalt	10.7	7.5	12	4.2	4.8	4.3	9.9	2.4	10.5	16.4	7.7
Copper	401	48.1	911	32.4	9.5	9.3	15.9	2.5	22.6	22.4	6
Iron	12700	8210	9320	4830	8310	7720	10300	0009	10400	11900	20300
Lead	136	160	85.5	34.9	10.4	9.01	20	7.4	51.4	84.7	10.3
Magnesium	3990	1990	2510	3370	1200	1270	7320	2980	2640	2950	3500

TABLE B-5
SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS
6-12 inches bgs, July 1997

			East Sol	East Soldier Creek	¥.			Wes	West Soldier Creek	Creek	
	QE06	QE07	QE08	QE09	QE10	QEII	10MQ	QW02	OW03	0W04	OW07
Manganese	251	475	530	323	250	123	605	145	449	775	330
Mercury	0.41	0.3	0.29	0.18					8000	0.10	100
Molybdenum	7.3	1.7	5.1	1.3	- Ci				77	4.5	-
Nickel	92.4	480	300	51.5	9.1	9.1	18.1	8.9	77.6	5 06	- (
Potassium	1400	800	821	271	823	636	1130	568	867	700 P00	208
Selenium	6.1		0.52	0.51							COO
Silver	4.7	13.1	14.8	3.5					4	5 2	
Sodium			177		127		107	131	136	1	517
Thallium			20.4				31.6				3,45
Vanadium	34	17	20.4	10.7	19.4	20.7	9.61	23.4	275	28.8	3,6
Zinc	268	210	128	57	12.2	1.11	59.3	7.9	87.4	73.6	215
Volatile Organics - Method 87	od 8260 (mg/kg)	gi Gi							- :=	0.07	0.4-0
1.1-Dichloroethane											
2-Butanone (MEK)	0.018	0.012		0.0032		0.0083					
Acetone	0.097	0.046		0.017	0.0098	0.033					
Benzene											
Carbon disulfide											
Chlorobenzene	0.0051	0.072	81	0.0014		0.15					
Methy lene chloride	0.0055	0.0022			0.0017				0.0018	0.0014	
Foluene	0.013	0.0015									
Trichloroethene											
Xylenes (total)		0.0031									

TABLE B-6 SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS Greater than 12 inches bgs, July 1997

	East Soldier Creek		West Solo	lier Creek	
	QE07	QW01	QW03	QW04	QW07
	1.5-2.0 feet	1.0-1.5 feet	1.5-2.0 feet	2.5-3.0 feet	1.0-1.5 feet
PCBs and Pesticides - Method	d 8080 (mg/kg)				
4,4'-DDD					
4,4'-DDE					
Aldrin					
alpha-Chlordane					
Aroclor 1254					
Aroclor 1260					
Dieldrin					
Endosulfan II					
gamma-Chlordane					
Heptachlor	0.011				
Heptachlor epoxide					
Semivolatile Organics - Metho	od 8270 (mg/kg)				
1,2-Dichlorobenzene					
1,3-Dichlorobenzene					
1,4-Dichlorobenzene					
1-Chloronaphthalene					
2,4-Dimethylphenol					
2-Chloronaphthalene					
2-Methylnaphthalene					
3-Methylcholanthrene					
Acenaphthene					
Acenaphthylene					
Acetophenone					
Anthracene		0.043			
Benzo(a)anthracene		0.16		0.064	
Benzo(a)pyrene		0.17		0.084	
Benzo(b)fluoranthene		0.13		0.089	
Benzo(g,h,i)perylene		0.1		0.12	
Benzo(k)fluoranthene		0.19		0.078	
Benzoic acid					
bis(2-Ethylhexyl)phthalate					
Butyl benzyl phthalate					
Chrysene		0.2		0.093	
Di-n-butyl phthalate					
Dibenz(a.h)anthracene					
Dibenzofuran		-			
Fluoranthene		0.32		0.15	
Fluorene					
Indeno(1,2,3-cd)pyrene		0.1		0,093	
Isophorone					*
Naphthalene					

TABLE B-6 SECOND EVENT THIRD YEAR MONITORING SEDIMENT DETECTIONS Greater than 12 inches bgs, July 1997

	East Soldier Creek		West Solo	lier Creek	
	QE07	QW01	QW03	QW04	QW07
	1.5-2.0 feet	1.0-1.5 feet	1.5-2.0 feet	2.5-3.0 feet	1.0-1.5 feet
Phenanthrene		0.18		0.075	
Pyrene		0.25		0.12	
Total Metals - Methods 6	010/7060/7471/7740 (mg/kg))			
Aluminum	2620	6870	2900	6730	6210
Antimony					4.8
Arsenic	2.4	1.2	1.5	0.88	2
Barium	713	199	193	315	87.5
Beryllium	0.36	0.81	0.35	0.46	l
Cadmium	143			0.82	
Calcium	839	12400	4930	2240	1230
Chromium	340	16.1	15.6	16.1	36
Cobalt	6.8	6.2	3.4	4.3	8.2
Copper	91.8	14.5	5.1	4.8	7.4
Iron	6380	10900	6870	4840	22500
Lead	6.4	15.3	8.2	5.4	12.2
Magnesium	764	6490	2710	1140	3310
Manganese	1450	562	458	121	302
Mercury	0.048				
Molybdenum	3.7		2.8		
Nickel	1360	16.3	15.2	6.6	23.9
Potassium	541	1090	454	654	701
Selenium					
Silver	2.9		0.95	0.43	0.5
Sodium	119			118	1090
Thallium		17.5			37
Vanadium	17	22.1	17.2	7.1	40.9
Zinc	30.3	43.3	15	11.1	28
Volatile Organics - Metho	od 8260 (mg/kg)				
1.1-Dichloroethane					
2-Butanone (MEK)					
Acetone	0.0066				
Benzene					
Carbon disulfide					
Chlorobenzene					
Methylene chloride	0.0015			0.0015	
Toluene					
Trichloroethene		**************************************			
Xylenes (total)					

TABLE B-7 FIRST EVENT THIRD YEAR LONG-TERM MONHORING SURFACE WATER DETECTIONS January 1997

-	_				Ξ.	East Soldier Creek	11								
	OF 01	QE02	QE03	QE04	QE05	0E06	QE07	OE08	OE09	01.10	11.10	0.00	West Sol	West Soldier Creek	
Dissolved Metals - Methods 6010:6020 (mg/L)	010:6020 (mg/l	(·]				,				×		COMA	cowo	OW (K)	QW07
Aluminum						890 0	900.0	110	0.12	0.15				0.0066	1
Antimony								0 00018	0.0002	0.000022	0.00023	0.00051	CC000 0	0.0000	=
Ватнит	14.0	0.47	8+0	+ 0	† 0	0.42	0.42	0.41	0.41	0.4	0.37	0.12	0.26	F-0000	0.053
Cadmium	0.00012	0.00024	0.00021	0.00018	0.00023	0.00049	0.0026	62000 0	0.001	0.0021	0.0014	0.00067	890000	0.00084	
Calerum	43.7	67.2	70.4	48.7	45.8	50.1	43.1	44.6	47.8	43.6	43.3	24.5	8 7	39.7	18.7
СЪгоппип	68000	0.013	0.013	0.0085	0.0087	0.0096	0.01	0.01	8600 0	0.011	0.0078	0.0036	0.0071	0.007	10.7
Cobalt	0.000093	0.00015	0.00016	0.000099	0.000085	0 00014	0.000072	0.00015	0.00016	0.00018	0.00016	0.0014	0.00011	1 1000 0	v 100 C
Copper	0.0013	0.047	1 0 0	0.015	0.0063	0.014	8600.0	0.014	0.014	0.014	6900 0	0.003	0.0053	0.0055	0.00030
Tron		0.042	0.054			0.024					0.073	-0	5000	0.031	
Lead		0.00027	0.00039			0.0013	0.001	0.0012	0.0013	81000	0.00043	0.000			
Magnesium	22.3	33.3	34.7	24	22.9	24.9	22.2	22.1	23.4	21.3	21	3.3	17.7	. 9-	
Manganese	0.0037	1100	8100	660000	£900 0	0.021	0.00047	9100	0.017	0.016	0.065	1900	0.0010	10.12	7 - 0
Modyhdenum	0.00028	6700 0	7¥00 0	0.0018	98000 0	0.0014	0.00019	0.0018	81000	0.0019	0.0021	0.019	0.000	50000	0.0005
Nickel	0.00054	11000	910000	0.00093	0.00074	0.0012	260000	0.0015	0.0015	6100 0	0.0019	0.038	0.003	0.0002	940000
Potassium	+	č	17	+	+	8.	1.2	1.5	9.1	5	9	4	1 5	O town in	0.0000
Silver		0.000035											-	0	c _
Sodium	77	36	282	16.4	15.3	17.8	12.9	17.3	8 81	1.7	173	-	7/1/2		
Thallum	0.000044		0.000054									-	/ 07	5 6 1	2.5
Vanadium	0.013	6100	6100	0.013	0.013	0.013	0.013	0.014	0.013	0.014	Clan	000000	00000		
Zine	0.0036	0.0084	0.0087	65000	0.0054	1100	0.024	0 0091	0.0094	100	0.0051	0.000	6/000	(nu o	0.00013
PCBs and Pesticides - Method 8080 (ug/L)	8080 (ug/L)										T. Carlo	0.013	0.000		0.036
Aroclor 12st	4	0.58													
Semivolatile Organics - Method 8270 (mg/L)	d 8270 (mg/L)														
his 2-Ethylbeys Inhithalate	4										0.00.41	0.043			
Total Metals - Methods 6010/6020/7060/7470 (mg/L.)	020/7060/7470) (mg/L.)									1000	cion		0.0016	100
Aluminum		6500.0			850.0	0.031		0.034	0.0057	90.0		5100	20000	Clara	
Antimony	0.00004		0.00012		0.00023	0.00012	0.0002	0.00025		0.00022	0.00029	0.00055	8c0000	0.000011	0.03
Atsenic		0.0026	0.0027							0.0023	0.0024		07/10/10	1	Channa C
Barrum	- -	95.0	č\$ 0	0.41	tt ()	940	0.43	0.42	0.43	14.0	0.36	51.0	800	200	50.0
Cadmum		0.00015	0.00014	0.000086	0.000.5	0.00022	0.0012	0.00038	0.000086	0.00094	90000	0.00088	0 00047	0.00052	
Calerum	42.7	72.4	68.0	47.7	45.3	48.2	42.3	46.7	76.2	14.5	44.5	23.8	7 07	. x	17.7
Съготинет	0.0047	0.014	0.011	0.0059	65000	0.0057	0.0066	0.0054	0.0048	0.0063	0.0041	0.0016	0.003	0.0028	0 0004
Cobalt	0.00026	0.00058	0.00053	0.00035	0.00044	0.00039	0.00027	0.00038	0.0003	0.0004	0.00036	81000	0.00034	0.00036	0.00017
Copper	0.0013	0.083	0.063	0.023	0.015	0.014	0.01	0.014	0.0095	0.014	9900.0	1900 0	0.0062	0.0063	0.0041
Iron	0.033	7 0	<u> </u>	6800	1900	0.11	0.024	0.13	0.16	0.15	0.34	0.44	0.046	0.053	0.00
l ead		0.0012	0.00086	0.0005	0.0012	0.0013	0.00094	0.0011	0.00047	0.0016	0.00023		0 00017	0.00022	
Magnestum	21.8	36.1	±5.	23.5	22.7	23.6	21.4	22.6	22.5	214	217	3.2	16.5	6+1	
Manganese	0.0036	0.011	0.013	6600.0	0.017	0.021	0.00021	0.014	6900.0	0.015	90.0	0.067	0.0028	0.0039	800.0
Molybdenum	0.00045	0.0027	0.0031	6100.0	0.0021	0.0014	0.00034	0.0021	0.0011	0.0022	0.0022	0.02	0.0063	0.0083	9000.0
Nickel	0.0096	20.0	0.016	0.011	0.012	0.012	0.01	0.011	10.0	0.012	0.011	0.052	100	0.016	0.0075
Potassium	7	e.	(-	v. –	1.5	16	7	1.7	9 -	1.6	1.6	× 1	+-	5	0-
Selemum		0.0042	0,000,0		0.0027					0.0023	0.0023				
Silver					0.00013										
Sodium	14.0	6.00	1.7.	16.5	- Q-	17.2	12.3	5 4	17.2	17.7	17.9	-7	20.7	161	t,
Vanadium	56000	0.018	0 0 16	100	0.011	T0 0	1100	100	8600 0	1100	0.0088	100.0	0.0059	0.0038	80000

TABLE B-7 FIRST EVENT THIRD YEAR LONG-TERM MONHORING SURFACE WATER DETECTIONS January 1997

					Fas	East Soldier Creek	ر د د						West Sol	West Soldier Creek	
1	QEOI	QE02	QE03	QE04	QE05	0E06	QE07	QE08	OE09	QE10	0E11	QW03	OW05	90.W.Ò	OWO
Zinc	0.0047	0.016	0.013	92000	0.0081	0.01	0.025	0.0073	0.0064	0.0093	0.0034	0.031	0.012	9100	9500
Volatile Organics - Method 8260 (mg/L	0 (mg/L)														
2-Butanone (MIFK)	0.0024	0.0033		\$100.0			0.0062	81000	0.0016		0.0018				0.0014
Acetone	1,000	0.0049	0.003	££00 0	0.0067	0.0036	0 00061	0.0037	0.0045	0.0048	0.0072	0.0058	0.0035	0.0034	0.007
Acrolem		0.0019							0.0025						
Acrylomitale		0.0022							0.0027						
Bromoform			0.0016												
Bromomethane												0.0015	0.0072	0.0042	
Chloroform															
Chloromethane												0.0011	0.0036	0.0021	
Dibromochloromethane			81000												
Ethanol		0.041													
lodomethane													0.0018	0.0012	
Methylene chloride		0.0047	6500.0			0.0039	0.0033								
Stylene												0.0034			
Wet Chemistry - Methods 130,2/160.1/160.2/300.0/310.1/410.4/415.1 (mg/L)	7160.1/160.2	/300.0/310.1/4	10.4/415.1 (m	g/L)											
Alkalımıy Bicarb as CaCO3 at	661	971	137	181	161	184	196	174	174	168	175	88	161	182	o +
Alkalimity, Carb. as CaCO3 at pH 8.3	183						99		26	6.2					
Alkalimity, Total as CaCO3 at p	199	971	137	184	161	181	203	179	180	174	176	88	161	182	? [†
Chemical Ovygen Demand (Regular)	ıları	8 6 1	6.01									25.6	C #1	24.3	9.6
Chloride	~ ×	8 91	1 91	9.6	6	10.2	2 8	10.2	10.2	6.6	+ 0	7	76	3	P 4
Handness as CaCO3	184	312	960	202	194	213	186	207	200	861	202	76	169	156	54.7
Sulfate	ee. 15	232	861	50.1	24.7	55.4	4.6	53.7	52.3	1.61	483	2.1	10.7	2	7 th
Total Dissolved Solids	235	507	187	286	257	301	236	290	286	274	281	06	242	220	43
Total Oreanic Cathon	0.71	5.5	. 8	2.5	2.1	3.1	98 0	7 7	rs +	7	- +	10.5	5.5	7.7	: +
Total Suspended Solids										7	3.6	1.6			+7

TABLE B-8 SECOND EVENT THIRD YEAR MONITORING SURFACE WATER DETECTIONS July 1997

					East S	East Soldier Creek	ek					We	West Soldier Creek	reek
	QE01	QE02	QE03	QE04	QE05	0E06	QE07	0E08	QE09	QE10	QEH	QW05	90.MÒ	QW.07
Dissolved Metals - Methods 6010/6020 (mg/L)	010/6020 (m	g/L.)												
Aluminum		0.0031	0.0036	0.0035			0.0035			0.0036	0.0056		0.0033	0.0075
Antimony						0.00017	0.00035			0.00017	0.00026			0.0003
Barium	0.44	0.39	0.39	0.44	0.46	0.57	0.38	0.59	0.58	55.0	0.55	0.44	0.000084	0.27
Cadmium	0.000054	16000000	0.000085	0.000065	0.0001	0.00023	0.0025	0.00032	0.00037	0.00043	0.0004	0.00028		
Calcium	47.5	6'44	45.9	48.1	50.7	9.69	38	71.5	71.4	67.9	69	8.19		7.90
Chromium	0.018	0.015	0.016	0.019	0.019	0.018	0.013	0.021	0.02	0.018	0.018	0.02	0.0011	0.014
Cobalt	0.00014	0.00017	0.00018		0.00015	0.00026	0.00019	0.00028	0.00028		0.00032	0.00021		0.00061
Соррег	0.0037	0.22	0.18	0.032	0.03	0.013	0.0084	0.017	0.016	0.0097	. 0.0067	0.013		0.0039
Iron						0.028		0.021	0.022		0.028			
Lead	0.00011	0.0003	0.0003	0.0001	0.00013	0.00039	0.00041	0.00062	0.00065	6900000	0.00065	0.00022	0.00021	
Magnesium	23	21.6	21.7	23.1	24.3	34.5	6.81	35.3	35.1	34.4	34.8	28.6		15.3
Manganese	0.0032	0.0078	0.0083	0.0046	0.0057	0.024	0.0056	0.022	0.022	0.031	0.083	0.00		0.12
Molybdenum	0.00019	0.0021	0.0022	0.00072	0.00091	0.0026	0.0018	0.0022	0.0022	0.0028	0.0032	0.00		0.0032
Nickel	0.0042	0.0048	0.0048	0.0046	0.0049	0.007	0.005	0.007	0.0073	0.0075	9800.0	0.0061		0.00
Potassium	1.7	1.6	1.4	1.4	1.7	2.3		2.4	2.5	2.3	2.5	1.5		10.7
Selenium	0.0016	0.0015	0.0014	0.0016	0.0013	0.0016	0.00078	0.0018	0.0018	0.0018	0.0017	0.0015	0.00011	0.0024
Silver										0.00008	0.000088			
Sodium	6.51	14.1	14.2	15	16.2	24.1	11.8	25.9	28.2	24.7	25.6	32.6		20.4
Vanadium	0.017	0.014	0.015	0.017	0.017	0.016	0.011	0.02	0.02	0.019	0.018	0.02	0.00029	0.007
Zine	0.02	0.025	0.024	0.02	0.021	0.024	0.021	0.024	0.023	0.023	0.023	0.04		0.015
Semis olatile Organics - Method 8270 (mg/L)	od 8270 (mg.	/L.)												
Benzy Lalcohol														
bis(2-Ethy lhexy Dphthalate	0.0036	0.0052	0.012	0.0048					0.14	0.005	0.0041			0.0043
Total Metals - Methods 6010/6020/7060/7470 (mg/L.)	5020/7060/7.	470 (mg/L.)												
Aluminum		0.052		0.014	0.021	0.058	690.0	0.086	61.0	0.12	0.16	0.044	0.011	0.73
Antimony														
Arsenie									0.0022	0.0028	0.0026			0.0038
Barium	0.45	0.4	0.38	97.0	0.43	0.51	0.36	0.55	0.62	0.53	0.54	0.45	0.00017	0.3
Cadmium	0.000073	0.00034		0.000074		0.00058	0.0041	0.00056	0.016	0.0013	0.0019	0.00042	0.0002	0.000074
Calcium	43.8	43.4	42.4	44.6	45.2	64.5	35.1	6.99	99	64.8	64.4	59.1	0.25	65.9
Chromium	0.0065	0.0077	0.014	0.0064	0.0061	0.005	0.0062	0.0075	0.045	0.0084	0.01	0.0049	0.00045	0.0014
Cobalt	0.0001	0.00047	0.00016	0.0001	0.00011	0.00021	0.00023	0.00026	0.00006	0.00033	0.00037	0.00018	0.000026	0.001

TABLE B-8 SECOND EVENT THIRD YEAR MONITORING SURFACE WATER DETECTIONS July 1997

					East S	East Soldier Creek	ck					We	West Soldier Creek	reck
	QE01	QE02	QE03	QE04	QE05	0E06	QE07	0E08	QE09	QE10	QEH	QW05	90.MÒ	QW07
Copper	0.0017	0.51	0.26	0.042	0.042	0.026	0.018	0.036	0.058	0.02	0.017	0.016		0.0072
Iron		0.22	0.11			0.12	0.19	0.18	-	† "()	0.37	990.0		6.1
Lead	0.00035	0.0039	0.0022	0.00035	0.0011	0.0012	0.0031	0.0015	0.015	0.0021	0.0031	0.00075		0.0018
Magnesium	22.3	21.2	21.4	22.5	23.4	32.1	9.71	33.3	32.2	32.2	31.6	27.5		14.3
Manganese	0.0049	0.022	8600.0	0.0051	0.0064	0.029	0.0081	0.036	0.097	0.053	160.0	0.0042	0.00015	0.24
Molybdenum		0.0017	0.0021	0.00064	0.00095	0.0018	0.0015	0.0019	0.0021	0.0025	0.0026	0.0018		0.0026
Nickel	0.0021	0.0058	0.0029	t700°0	0.0023	0.004	0.0041	0.0043	0.013	0.0054	8900.0	0.004	0.00026	0.0068
Potassium	+-	† "	+ .	t'1	1.5	2.4	1.4	2.5	2.7	2.4	2.4	9.1		10.1
Selenium	0.00044	68000.0	6600000	0.00048	0.00071	0.001	0.00043	0.0011	0.0011	0.0013	0.0012	0.001		0.0018
Silver									0.00062		0.00016			
Sodium	13.9	12.6	13.7	1.4.1	15.8	21.1	10.3	22.3	21.6	7.7	22.4	29.8		16.8
Vanadium	0.014	0.015	0.012	0.014	0.013	0.013	0.0084	0.016	0.017	0.016	0.014	0.016		0.0049
Zinc	0.018	0.075	0.033	0.02	0.05	0.021	0.031	0.024	0.047	0.022	0.023	0.042		0.021
Volatile Organics - Method 8260 (mg/L)	0 (mg/L)													
Acetone		0.012	0.0073		0.003	0.0046	0.0065	0.0043	0.0031	0.0041		0.0055		0.0037
Chloroform														
Methy lene chloride					0.0013	0.001	0.001	0.0012					0.0014	
Wet Chemistry - Methods 130.2/160.1/160.2/300.0/310.1/410.4/	2/160.1/160).2/300.0/31	-	15.1 (mg/L)										
Alkalinity, Bicarb. as CaCO3 a	208	172	9/1	204	212	232	165	244	244	229	234	147		217
Alkalinity, Carb. as CaCO3 at	1.2	0.75										25.7		
Alkalinity, Total as CaCO3 at	500	173	971	204	212	232	165	244	244	230	234	797		217
Chemical Oxygen Demand (Regular)	ılar)		t7					7.9	7.3	6	14.1	€'6		26.8
Chloride	7.7	5.5	7.7	7.6	8.1	13.9	6.2	14.4	14.3	14.2	14.7	13.3		8.6
Hardness as CaCO3	190	9/1	781	192	202	285	154	295	291	285	287	757		206
Sulfate	5.5	27.9	31.9	13.9	19.7	83.2	7	8.06	6.88	86.7	67.6	13.6		20.8
Total Dissolved Solids	234	234	741	253	264	379	188	366	389	384	360	7t£		309
Total Organic Carbon	95.0	1.4	1.5	0.58	=	2.6	2.1	۲.	3.4	2.7	2.7	1.6		9.8
Total Suspended Solids						7	7	9	136	×	10.4			49.3

	Frequency of	T		
Analyte	Detection	Average Result	Maximum Result	Minimum Result
Semivolatile Organics - Method 8270 (mg/kg)				
(2-Methylbutyl)cyclohexane	2	1.035	1.9	0.17
(6H)Cyclobuta[jk]phenanthrene	2	1.435	2.4	0.47
(Z)14-Tricosenyl formate	1	3.2	3.2	3.2
.PsipsiCarotene, 7,7',8,8',11,11',12,12',1!	2	0.47	0.77	0.17
.alphaAmyrin	1	1.2	1.2	1.2
.alphaPinene	1	1.3	1.3	1.3
.betaAmyrin	1	0.82	0.82	0.82
1.1'-Biphenyl, 2.2',3,3',4,4',5,5',6.6'-decafluo!	1	2	2	2
1.1'-Biphenyl, 2.2',5.6-tetrachloro-	1	1.3	1.3	1.3
1.1'-Biphenyl, 2,3,4,4',6-pentachloro-	2	0.635	1.1	0.17
1.1':2',1"-Terphenyl, 2,5-dichloro-	2	2.7	3.5	1.9
1,1':4',1"-Terphenyl, 2,4,6-trichloro-	2	0.72	1.2	0.24
1.14-Docosanediol	1	0.9	0.9	0.9
1.2-Benzenedicarboxylic acid, bis(1-methylethyl)!	2	1.13	2	0.26
1.2-Benzenedicarboxylic acid,bis(8-methylnonyl)!	6	4.366666667	17	0.4
1,2-Benzenedicarboxylic acid,diisodecyl ester	6	9.934782609	26	0.17
1,2-Benzenedicarboxylic acid,diisooctyl ester	1	1.9	1.9	1.9
1.2-Benzenedicarboxylic acid.ditridecyl ester	9	7.491538462	56	0.17
1,22-Docosanediol	1	0.23	0.23	0.23
1,3,5-Triazine, 2-(butylthio)-4,6-bis(trichlorom!	1	0.26	0.26	0.26
1,3-Cyclohexadiene-1-carboxylic acid, 2,6,6-tri!	1	0.62	0.62	0.62
1.3-Dioxolane, 4-ethyl-5-octyl-2,2-bis(trifluoro	1	0.22	0.22	0.22
1.3-Dioxolane, 4-ethyl-5-octyl-2,2-bis(trifluoro!	ı	1.5	1.5	1.5
1.4-Methanoazulene, decahydro-4.8.8-trimethyl-9!	2	0.625	0.74	0.51
1-Chlorohexadecane	4	1.4475	2.9	0.24
1-Cyclohexene-1-butanal, .alpha.,2,6,6-tetrameth	1	0.25	0.36	0.19
1-Cyclohexene-1-butanal, .alpha2,6,6-tetrameth!	1	0.43	0.43	0.43
1-Decene, 5-methyl-	1	7.4	7.4	7.4
1-Docosanol, acetate	1	5	5	5
1-Dodecene	1	0.18	0.18	0.18
1-Dotriacontanol	1	2.2	2.2	2.2
1-Eicosanol	l l	1.2	1.2	1.2
1-Ethyl-2.2.6-trimethylcyclohexane	1	1.8	1.8	1.8
1-Hentetracontanol	2	1.53	2.9	0.16
1-Hexacosene	1	3.6	3.6	3.6
1-Hexadecyne	l	2.5	2.5	2.5
1-Hexanone, 1-(4-methyl-5-tridecyl-2-thienyl)-	1	8.9	8.9	8.9
1-Methyl-1-(p-methylphenyl)tetra chlorocyclotriph!	1	0.79	0.79	0.79
1-Naphthalene, decahydro-4a-methyl-1-methylene-!	1	0.59	0.59	0.59
1-Nonadecene	1	0.2	0.2	0.2
1-Phenylcyclohexanol-1	1	0.32	0.32	0.32
1-Undecene, 8-methyl-	ı	0.18	0.18	0.18
10-Undecenoic acid, 2-(acetyloxy)-,methyl ester		0.7	0.7	0.7
10H-Phenothiaphosphine, 7-chloro-2-fluor-10-hydr!	3	1.318571429	2.6	0.37
11-Dodecen-1-ol, 2,4,6-trimethyl(R,R,R)-	1	1.5	1.5	1.5
HH-Benzo[a]fluorene	4	1.66	4.2	0.47
HH-Benzo[b]fluorene	3	1.676	3.2	0.34

	Frequency of	T		
Analyte	Detection	Average Result	Maximum Result	Minimum Result
14-Pentadecenoic acid	1	0.52	0.52	0.52
17-Pentatriacontene	1	0.52	0.53	0.51
III-3a,7-Methanoazulene, 2,3,4,7,8,8a,-hexahydro-	1	0.51	0.51	0.51
1H-Cyclopenta[1,3]cyclopropa[1,2]benzene, octah!		0.28	0.28	0.28
IH-Cycloprop[E]azulene, decahydro-1,1,7-trimethyl!	1	0.57	0.57	0.57
III-Cycloprop[e]azulene, 1a.2.3,4,4a,-5,6,7b-oct!	1	0.96	0.96	0.96
111-Indene, 2-butyl-5-hexyloctahydro-	3	1.824	3.8	0.32
111-Indene, 5-butyl-6-hexyloctahydro-	11	1.439	5	0.16
111-Indene, octahydro-2,2,4,4,7,7-hexamethyl-	1	6.1	6.1	6.1
111-Indole, 2-methyl-3-phenyl-	1	3.4	3.4	3.4
111-Pyrazole, 4-nitro-	1	0.45	0.45	0.45
2(1H)-Naphthalenone, octahydro-4a,7,7-trimethyl-!	1			
2(1H)-Naphthalenone, octahydro-4a-methyl-7-(1-me	2	1.973333333	4.1	0.22
		0.24	0.24	0.24
2(1H)-Naphthalenone, octahydro-4a-methyl-7-(1-me!	2	1.345	1.7	(),99
2(1H)-Naphthalenone, octahydro-8a -methyl-, cis-	1	3.7	3.7	3.7
2(11)-Naphthalenone,octahydro-4a,4-dimethyl-3-(1!	1	4,4	4.4	4.4
2(111)-Penanthrenone, 3,4,4a,9,10,10A-hexahydro-6!	2	0.77	1.3	0.24
2.3-Pentadienoic acid, 2-ethyl-4-phenyl-	1	0.61	0.61	0.61
2.6-Nonadienoic acid, 7-ethyl-9-(3-ethyl-3-methy!	1	1.9	1.9	1.9
2-(Acetoxymethyl)-3-(methyxycarbonyl)biphenylene	ı	0.21	0.21	0.21
2-Butanone, 4-(2,6,6-trimethyl-2-cyclohexen-1-yl!	2	1.35	1.6	1.1
2-Butene, 1-chloro-3-methyl-	1	1.6	1.6	1.6
2-Chloro-4.6-di(4-chlorophenyl)pyrimidine	1	2.6	3.4	1.8
2-Cyclopenten-1-one, 3,4-dihydroxy-5-(3-methyl-2!	1	6.2	6.2	6.2
2-Dodecen-1-yl(-)succinic anhydride	28	2.272916667	9.2	0.17
2-Naphthalenol, 1,6-dibromo-	1	2.4	2.7	2.1
2-Nonylphenol	3	2.24	4.7	0.92
2-Octenal, (E)-	1	5.2	5.2	5.2
2-Pentanone, 4-hydroxy-4-methyl-	74	28.67702703	110	3.5
2-Propenoic acid, 2-cyano-3-[4-diethylamino)phen!	1	8.8	8.8	8.8
2-Propenoic acid, 3-[2,3-dihydro-3-[(4-methoxyph!	1	1	l	1
28-Nor-17.alpha.(H)-hopane	4	1.5725	2.1	().99
28-Nor-17.beta.(H)-hopane	2	6.05	9.3	2.8
2H-Indol-2-one, 1,3-dihydro-	1	3.4	3.4	3.4
3.4-Dihydrocyclopenta(cd)pyrene (acepyrene)	1	1.5	1.5	1.5
3.5-Decadiene,2.2-dimethyl-, (Z.Z)-	1	1.9	1.9	1.9
3-Dodecene, (Z)-	1	1.4	1.4	1.4
3-Eicosene, (E)-	1	1.4	1.4	1.4
3-Hexadecene, (z)-	<u> </u>	0.21	0.21	0.21
3-Hexene-2,5-diol	1	0.27	0.27	0.27
3-Methyl-p-anisaldehyde	<u> </u>	5.35	7.9	2.8
3-Octadecene, (E)-		0.43	0.43	0.43
4.7-Dimethyl-1,10-phenanthroline	1	1.3	1.3	1.3
4.7-Methano-111-indene, octahydro-	1	0.21	0.21	0.21
4-Hexenoic acid, 3-methyl-2.6-dioxo-	2	3.845	6.9	0.21
4-Undecene, 3-methyl-, (Z)-		5.8	5.8	5.8
4-Undecene, 4-methyl-, (Z)-	l l	4.9	3.6	4.9
4H-1-Benzopyran-4-one, 2-(3.4-dihdroxyphenyl)6,8!	2	26.2	5()	2.4
4H-Cyclopenta[def]phenanthrene	- 6	2.13666666	3.3	0.22

	Frequency of			
Analyte	Detection	Average Result	Maximum Result	Minimum Result
5-Octadecene, (E)-	1	3.8	3.8	3.8
5.betaCholest-23-ene. (Z.)-	1	0.27	0.27	0.27
6-(3-Methyl-3-cyclohexenyl)-2-methyl -2.6-heptadi	i	0.49	0.49	0.49
6-Octen-1-ol, 3,7-dimethyl-, acetate	2	3.8975	6.4	0.69
6-Octenal, 3,7-dimethyl, (R)-	I	0.26	0.26	0.26
6H.8H-Benzo[10,11]chryseno[1,12-cd]pyran-6,8-dio!	2	14.2	24	4,4
7-Amino-2.3-dihydro-5-phenyl-1H-1,4-benzidazepi!	1	0.57	0.57	0.57
7-Tetradecene. (E)-	1	1.2	1.2	1.2
7H-Benz[de]anthracen-7-one	1	1.6	2	1.2
7H-Benzo[c]fluorene	1	0.94	0.94	0.94
8-Decenoic acid, 5-ethenyl-3,5,9-trimethyl-, met!		1.8	1.8	1.8
9,10-Anthracenedione	2	0.685	1.2	0.17
9,19-Cyclolanost-25-en-3-ol, 24-methyl-, (3.beta!	1	2	2.8	1.2
9-Borabicyclo[3.3.1]nonane, 9-hydroxy-	1	2.1	2.1	2.1
9-Eicosene, (E)-	1	0.28	0.28	0.28
9-Oxabievelo[6.1.0]nonane, 1-methyl-,cis-	1	3.4	3.4	3.4
Acetamide, N-(2,6-dimethylphenyl)-	1	1.8	1.8	1.8
Acetamide, N-(3-methylphenyl)-	1	1	1	1
Acetamide, N-methyl-N-[4-[4-methoxy-1-hexahydrop!	3	7.12	27	3.1
Acetic acid, [4-(1,1-dimethylethyl)phenoxy]-, me!	1	1.9	1.9	1.9
Alnulin	i	1.4	1.4	1.4
Androst-5-en-3-ol, 4,4'dimethyl-, (3,beta.)-	i	1.3	1.3	1.3
Androstane-3,11,17-trione.(5.alpha.)-	1	0.27	0.27	0.27
Anthracene	2	0.227	0.4	0.054
Anthracene, 1-methyl-	3	1.366666667	1.5	1.3
Anthracene, 2-methyl-	2	0.356666667	0.7	0.18
Anthracene, 9-dodecyltetradecahydro-	2	1.05	1.9	0.2
Baccharane	2	1.07	1.4	0.74
Benzaldehyde, 4-hydroxy-3-methoxy-5-nitro-		6.3	6.3	6.3
Benzene, (2-methyl-1-propenyl)-		0.51	0.51	0.51
Benzene, 1.1',1"-[1-bromomethyl)-2-methoxy-1-et!	1	9.8	9.8	9.8
Benzene, 1.1'-(1.3-butadiyne-1.4-diyl)bis-	1	1.75	2	1.5
Benzene, 1,1'-ethylidenebis[3,4-dimethyl-	1	0,7	0.7	0.7
Benzene, 1.2.4.5-tetramethyl-	1	4.75	4 9	4.6
Benzene, 1,4-bis(1,1-dimethylethyl)-		4.4	1.1	1 1
Benzene, 1-methoxy-4-pentyl-	1	0.22	0.22	(),22
Benzene, 1-methyl-2-(1-methylethyl)-	1	3.8	3.8	3.8
Benzene, 4-ethyl-1,2-dimethyl-	1	0.96	0.96	0.96
Benzo(a)pyrene	2	3.85	4.6	3.1
Benzo(b)fluoranthene	1	4.31	9.4	0,43
Benzo(c)phenanthrene	3	0.5675	0.89	0.2
Benzo(e)pyrene	5	0.926666667	1.9	0.2
Benzo(j)fluoranthene	1	2.22	8.8	0.32
Benzo(k)fluoranthene	3	6.325	10	2.9
Benzo[a]pyrene, 4.5-dihydro-	i	1.3	1.3	1.3
Benzo[b]naphtho[2.3-d]furan	1	0.88	0.88	0.88
Benzo[b]naphtho[2.3-d]thiophene	1	1.9	1.9	19
Benzo[ght]fluoranthene	3	1.026666667	2.1	0.25
Benzofuran, 2.3-dihydro-7-methoxy-3-methyl-5-(1-)	1	1.5	1.5	1.5

	Frequency of			
Analyte	Detection	Average Result	Maximum Result	Minimum Result
Benzoic acid, 2-(4-methylbenzoyl)-	1	1.5	1.5	1.5
Bicyclo[5.1.0]octane, 8-(1 -methylethylidene)-	1	0.3	0.3	0.3
C(14a)-Homo-27-nor-14.betagammaceran-3.alpha!	3	1.98	3.5	1
C(14a)-Homo-27-norgammacer-13-en-21-ol. 3-methox!	1	0.92	0.92	0.92
Caprolactam	1	0.25	0.25	0.25
Carbazole	6	0.918333333	1.8	0.22
Caryophyllene	1	0.22	0.22	0.22
Cholest-23-ene. (5.beta.)-	Ī	3.7	3.7	3.7
Choles 2 1/2-methylene-, (3.beta.,5.alpha.)-	4	1.153333333	2.4	0.61
Cholestan-3-one, 4,4-dimethyl-,(5,alpha.)-	3	0.836666667	1.9	0.26
Cholestane, 4,5-epoxy-, (4,alpha.,5,alpha.)-	1	3	3	3
Chromone, 3,5-dibromo-6-hydroxy-2-methyl-	8	1.142666667	4.2	0.2
Citronella	1	0.36	0.36	0.36
Cyclododecane	2	4.3	4.9	3.7
Cyclohexane, (1-ethylpropyl)-	2	2.3	3.4	1.2
Cyclohexane, (1-methylpropyl)-	2	3.4	4.1	2.7
Cyclohexane, (2-methylpropyl)-	I	0.46	0.46	0.46
Cyclohexane, 1,1-dimethyl-2,4-bis (1-methyletheny!	1	1.3	1.3	1.3
Cyclohexane, 1,2,3-trimethyl-,(1.alpha.,2.alph!	1	7	7	7
Cyclohexane, 1,2-dimethyl-, trans-	1	0.17	0.17	0.17
Cyclohexane, 1,2-dimethyl-3-pentyl-4 -propyl-	3	3.26	4.7	1.5
Cyclohexane, 1,3-dimethyl-, cis-	10	0.669	1.7	0.18
Cyclohexane, 1,4-dimethyl-	3	0.53	1.1	0.2
Cyclohexane, 1,4-dimethyl-, cis-	2	1.68	3.2	0.16
Cyclohexane, 1,4-dimethyl-, trans-	1	0.17	0.17	0.17
Cyclohexane, 1,5-diethenyl-2,3-dimethyl-	1	3.2	3.2	3.2
Cyclohexane, 1-(1.5-dimethylhexyl)-4-(4-methylpe!	1	1.7	1.7	1.7
Cyclohexane, 2,4-diethyl-1-methyl-	1	2.1	2.1	2.1
Cyclohexane, 2-butyl-1,1,3-trimethyl-	3	1.716666667	2.9	0.35
Cyclohexane, 2-propenyl-	1	1.8	1.8	1.8
Cyclohexane, 3,4-bis(1-methylethenyl)-1,1-dimeth!	1	9.5	9.5	9.5
Cyclohexane, 1, 2, 4, 5-tetraethyl-, (1.alpha., 2.alp!	3	1.79	3.2	0.27
Cyclohexanone	1	1.3	1.3	1.3
Cyclohexene, 1-methyl-4-(5-methyl-1 -methylene-4!	1	0.25	0.25	0.25
Cyclopentane, 1,1'-[3-(2-cyclopentylethyl)-1,5-p!	3	3.9	6.8	1.5
Cyclopentane, 1,1,3-trimethyl-	2	0.735	1.2	0.27
Cyclopentane, 1-butyl-2-pentyl-	1	3.1	3.1	3.1
Cyclopentane, 1-hexyl-3-methyl-	1	1.1	1.1	1.1
Cyclopentane, 1-methyl-3-(1-methylethyl)-	2	2.155	4	0.31
Cyclopentane, 1-pentyl-2-propyl-	2	3.25	4.5	2
Cyclopentanone, 2-methyl-4-(2-methylpropyl)-	1	0.77	0.77	0.77
Cyclopropa[5,6]-33-norgorgostan-3-ol. 3',6-dihyd	1	0.94	0.94	0.94
Cyclopropanecarboxylic acid, 2.2-dimethyl-3-(2-m!	<u> </u>	1.1	1.1	11
Cyclopropanenonanoic acid, 2-[(2-butyleyclopropy!	<u> </u>	7.8	7.8	7.8
Cyclotetracosane	- 	5.6	5.6	5.6
Cyclotetradecane, 1.7.11-trimethyl-4-(1-methylet!	13	2.83962963	23	0.24
Cyclotriacontane	1	0.65	0.65	0.65
D-Friedoolean-14-ene, 3-methoxy(3 beta.)-	4	1.1175	1.4	0.87
D-Homoandrostane, (5 alpha, 13.alpha,)-		2.086666667	4.5	0.56

Analyte	Frequency of Detection	Average Result	Maximum Result	Minimum Result
Decahydro-9-ethyl-4,4,8,10-tetramethyl naphthalen	1	0.38	0.38	0.38
Decane	2	3.13	5.8	0.46
Decane, 2.6,7-trimethyl-	4	4.775	8.4	0.2
Decane, 2-methyl-	3	2.3975	4.2	0.29
Decane, 3.8-dimethyl-	1	6	6	6
Decane, 3-methyl-	2	3.1233333333	5.1	0.57
Decane, 4-methyl-	ı	3.3	3.3	3.3
Decane, 5-propyl-	1	2.7	2.7	2.7
Decanedioic acid, didecyl ester	ı	1.3	1 3	1.3
Dextro-camphoric acid	1	0.2	0.2	0.2
Dibenz(a,j)acridine	1	0.33	0.33	0.33
Dibenzothiophene	3	0.766666667	1	0.32
Docosane	1	1.2	1.2	1.2
Docosane, 2,21-dimethyl-	1	9,6	9.6	9.6
Dodecane Dodecane	7	4.058888889	11	0.74
Dodecane, 2.6,10-trimethyl-	9	2.632	6.8	0.19
Dodecane, 2.6,11-trimethyl-	5	3.018333333	9.1	0.18
Dodecane, 2,7,10-trimethyl-	1	0.98	0.98	0.98
Dodecane, 2-cyclohexyl-, 2-cyclohexyl-	<u> </u>	2.6	2.6	2.6
Dodecane, 2-methyl-8-propyl-	i	6.9	6.9	6.9
Dodecane, 4,6-dimethyl-	<u> </u>	2.8	2.8	2.8
Dodecane, 6-methyl-	2	1.055	1.8	0.31
Eicosane	- 8	8.297272727	39	0.24
Eicosane, 9-octyl-	1	13	13	13
Ergost-22-en-3-ol, (3.beta5.alpha22E24R)-	1	0.38	0.38	0.38
Ergost-5-en-3-ol, (3.beta.)-	1	10	10	10
Estra-1.3.5(10)-trien-17-one, 2-hydroxy-	1	1.1	1.1	1.1
Estra-1,3,5(10)-trien-17-one, 3-hydroxy-	1	0.82	0.82	0.82
Ethanoic acid, S-methyl ester	2	0.505	0.66	0.35
Formamide, N'-(m-acetylphenyl)-N.N-dimethyl-	- 1	0.56	0.56	0.56
Fumariline	1	6.6	6.6	6.6
Halogenated Compound	3	2.14	3	1.3
Heneicosane		2.14	2.9	2.9
Heneicosane, 3-methyl-		0.79	0.79	0.79
Heptacosane	8	5.250909091	22	0.25
Heptadecane	7	2.671428571	7 7	0.23
Heptadecane, 2,6,10,15-tetramethyl-	.1	5.785	12	0.21
Heptadecane, 2.6-10,15-tetramethyt-	4	3.5075	5.6	0.63
Heptadecane, 3-methyl-	1	0.87	0.87	0.87
	1		 	<u> </u>
Heptadecane, 9-octyl-	1	L.9	1.9	1.9
Heptane, 3-ethyl-2-methyl-	1	1.3	1.3	1.3
Heptane, 4-ethyl- Hexacosane	1 ,	4.6	4.6	4.6
	6	4.631428571	13	0.26
Hexadecane	7	2.27	5.5	0.17
Hexadecane, 2.6.10.14-tetramethyl-	3	3.875	1.7	0.2
Hexadecane, 2.6.11,15-tetramethyl-	3	2.19	1.	0.27
Hexadecane, 2-methyl- Hexadecane, 7-methyl-	.3	0.615	0.98	0.25
Hexadecane: -metnyi- Hexadecanoic acid	2	0.612	0.34	0.25

Analyte	Frequency of Detection	1 D	Maximum Result	NG.:
Hexadecanoic acid, 2-hydroxy-,methyl ester	8	1.895	11	0.27
Hexanoic acid		0.33	0.33	0.33
Hexatriacontane	5	1.126	2.8	0.37
Imidazole, 2,5-dibromo-4-phenyl-	1	0.19	0.19	0.19
Imidazole, 4-amino-5-ethyloxycarbonyl-	1	1.3	1.3	1.3
Isooctane, (ethenyloxy)-	1	0.39	0.39	0.39
Longifolenaldehyde	3	1.363333333	2.1	0.29
Lupcol	1	0.35	0.35	0.35
N-Cyano-N'.N',N",N"-tetrameth; !-! 3,5-triazine!	1	0.23	0.23	0.23
Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl	1	0.29	0.29	0.29
Naphthalene, 1.2.3.4-tetrachloro-	4	0.878888889	2.6	0.21
Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-!	2	1.285	1.9	0.67
Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-di!	1	0.69	0.69	0.69
Naphthalene, 1.3,7-trichloro-	3	1.03	1.7	0.44
Naphthalene, 1,8-dimethyl-	1	2.3	2.3	2.3
Naphthalene, 2,3,6-trichloro-	3	0.7875	1.3	0.31
Naphthalene, 2,3-dichloro-	1	1	1	1
Naphthalene, 2,3-dimethyl-	1	0.55	0.55	0.55
Naphthalene, 2,7-dichloro-	1	0.18	0.18	0.18
Naphthalene, decahydro-2,6-dimethyl-	1	0.35	0.35	0.35
Naphthalene, decahydro-2-methyl-	1	1.3225	2.9	0.19
Neopentylidenecyclohexane	2	1.645	2.6	0.69
Nitrogen Compound	1	2.3	2.3	2.3
Nonacosane	1	6.4	6.4	6.4
Nonadecane	1	4.7	4.7	4.7
Nonadecane, 9-methyl-	2	8.9	14	3.8
Nonahexacontanoic acid	3	8.606666667	21	0.72
Nonane, 3-methyl-		8	8	8
Octadecane	8	5.887777778	30	0.18
Octadecane, 1-bromo-	1	0.3	0.3	0.3
Octadecane, 1-chloro-	3	1.566666667	3.4	0,55
Octadecane, 2.6-dimethyl-		13	13	13
Octadecane, 2-methyl-	2	3.25	4.2	2.3
Octane		4.7	4.7	4.7
Octane, 2.3.7-trimethyl-		2.051428571	4.6	0.2
Olean-12-ene	1	0.63	0.63	0.63
Olean-18-ene	1	0.82	0.82	0.82
Oxirane, hexadecyl-	2	0.295	0.4	0.82
Oxygenated Hydrocarbon		2.41	17	0.17
P-Terphenyl, 2.4,4",6-tetrachloro-	11	1.7	1.7	1.7
Pentacosane	1 4		1.7	
Pentadecane Pentadecane	- +	4.303333333		0.2
			4.9	0.25
Pentadecane, 2.6.10.14-tetramethyl-	6	3.273333333	11	0.54
Pentalene, octahydro-1-(2-octyldecyl)-	3	1.173333333	2.6	0.21
Pentatriacontane	1	0.52	0.52	0.52
Perylene Disputation 2 months 1	6	4.04125	7.8	0.33
Phenanthrene, 2-methyl-		1.1	1.1	1.1
Phenanthrene, 3-methyl- Phenanthrene, 7-ethenyl-1,2,3,4,4a,4b,5-,6,7,8,8		0.65	0.99	0.99

	Frequency of	1		
Analyte	Detection	Average Result	Maximum Result	Minimum Result
Phenol, 2,4-bis(1-methylethyl)-		0.75	0.75	0.75
Phenol, 2-(1,1-dimethylethyl)-	3	2.166666667	3.2	1.5
Phenol, 2-(1,1-dimethylethyl)-5-methyl-	1	0.85	0.85	0.85
Phenol, 2-methyl-5-(1-methylethyl)-	1	1.4	1.4	1.4
Phenol, 4,4'-butylidenebis[2-(1,1-dimethylethyl)	1	1.1	1.1	1.1
Phenol, 4-(1,1,3,3-tetramethylbutyl)-	8	1.0375	2.6	0.17
Phenol, 4-(1,1-dimethylpropyl)-	4	1.621666667	3.7	0.93
Phenol, 4-(2,2,3,3-tetramethylbutyl)-	3	2.476666667	6.1	0.42
Phenol, 4-(2,2,4-trimethylpentyl)-		1.9	1.9	1.9
Phenol, 4-(2-methylpropyl)-	1	6.3	6.3	6.3
Phenol, 4-dodecyl-		5.7	5.7	5.7
Phenol, 4-nonyl-	5	2.55	5.9	0.28
Phenol, 5-methoxy-2-(3,4,9,10-tetrahydro-8,8-dim!	1	1.9	1.9	1.9
Phenol, chloro-4-(1,1-dimethylethyl)-,acetate		0.29	0.29	0.29
Phenol, m-tert-butyl-	2	1.803333333	3.2	0.61
Phenol, nonyl-	9	1.94444444	6.8	0.21
Phenol-2,6-dimethoxy-4-(2-propenyl)-	1	2.3	2.3	2.3
Phenothiazino[4,3-c]phenothiazine,8,16-dihydro-	1	0.27	0.27	0.27
Phosphonic acid, 1.3-propanediylbis-,tetraethyl!	1	1.9	1.9	1.9
Phosphonic difluoride.(pentafluorophenyl)-	i	1.6	1.6	1.6
Phosphoric acid, 2-ethylhexyl diphenyl ester	3	3.3	5.8	1.5
Phthalic acid, allyl ethyl ester	1	21	21	21
Phthalic anhydride	1	1.8	1.8	
Polynuclear Aromatic Hydrocarbon	3	1.3125		1.8
Propane, 1.3-bis(ethylthio)-	2	3.33	2.5 9.5	0.44
Pyrazine, 3.5-diethyl-2-methyl-	1	3.2	3.2	0.21
Saturated Hydrocarbon	5	3.374736842		3.2
Silane, chlorotripropyl-		0.7	0.7	0.18
Siloxane	12	1.27375	14	0.17
Squalene	7	2.7033333333	5.8	0.17
Stannane, chlorotris(2-methylpropyl)-	2	4.4	4.9	3.9
Sterol Sterol	7	0.567826087	1.9	0.19
Stigmast-4-en-3-one	2	0.405	0.47	
Stigmast-5-en-3-ol-, (3.beta.,248)-	2	4.5	6.9	0.34 2.1
Sulfur, mol. (S8)	3	4.425	11	- 11
Terphenyl, 2.5,4-trichloro-	1	0.41	() 41	0.41
Tetracosane	10	4.9525	15	0.18
Tetracosatetraene, 2.6,10,15,19,23-hexamethyl-	1	0.35	0.35	0.35
Tetradecanal	1	3.7	3.7	3.7
Tetradecane	3	2.826666667	8	0.23
Tetradecane, 1-bromo-	1	0.47	0.47	0.25
Tetratetracontane	2	1,565	2.7	0.47
Toluene, 4-acetylamino-	2	2.45	2.5	2.4
Triacontane		0.98	0.98	0.98
Tricosane	4	7.118	14	0.98
Trievelo[4.3.0.07,9]nonane, 2.2.5.5,8,8-hexamet!	4	3.5425	- 14	0.19
Tricyclo 4.3.1.13.8 Jundecane, 1-chloro-		2.7	2 7	2.7
Tricyclo[4/3.1.13.8]undecane-3-carboxylic acid. '	i	5.6	5.6	5.6
Tridecane	8	1.73	6.9	0.17

	Frequency of			
Analyte	Detection		Maximum Result	Minimum Result
Tridecane, 2-methyl-	1	1.3	1.3	1.3
Tridecane, 5-propyl-	2	3.675	6.4	0.95
Tridecane, 6-propyl-	1	0.38	0.38	0.38
Tridecanol		0.73	0.73	0.73
Triphenylene	1	1.7	1.7	1.7
Tritetracontane	2	5.95	8.4	3.5
Undecane, 2,5-dimethyl-	l l	2	2	2
Undecane, 2.6-dimethyl-	10	3.176	7.4	0.25
Undecane, 2.8-dimethyl-	1	7.6	7.6	7.6
Undecane, 2-methyl-	1	3.7	3.7	3.7
Undecane, 3,6-dimethyl-	2	1.52	2.2	0.84
Undecane, 3,8-dimethyl-	1	0.89	0.89	0.89
Undecane, 4,6-dimethyl-	1	0.63	0.63	0.63
Undecane, 4-methyl-	i	4.2	4.2	4.2
Unknown	1	0.41	0.41	0.41
Unsaturated Hydrocarbon	1	3.3	3.3	3.3
Urs-12-ene	1	0.91	0.91	0.91
Urs-12-ene, 3-methoxy-, (3.beta.)-	1	0.47	0.47	0.47
Urs-20-en-16-ol, (16.beta.,18.alpha.,19.alpha.)-	I	2.9	2.9	2.9
Vitamin E	2	8.6	14	3.2
[1,2'-Binaphthalene]-5,5',8,8'-tetrone, 1',4-dih	2	0.253333333	0.4	0.17
[1,2'-Binaphthalene]-5,5',8,8'-tetrone, 1',4-dih!	24	2.92375	40	0.18
d-Galactitol, 2-(acetylmethylamino)-2-deoxy-3,4,!	1	2	2	2
d-Homoandrostane, (5.alpha.,13.alpha.)-	4	2.328	5.9	0.71
n-Amylcyclohexane	2	6.75	10	3.5
n-Octacosane	1	0.76	0.76	0.76
Volatile Organics - Method 8260 (mg/kg)				
alphaPinene	1	0.0065	0.0065	0.0065
1,1,3,3,5-pentamenthyleyclohexane	1	0.43	0.43	0.43
1.1.4-Trimethylcyclohexane	1	0.047	0.047	0.047
1.2.4-Trimethylbenzene	2	0.0075	0.0085	0.0065
1,2-Dichlorobenzene	3	0.0395	0.088	0.0075
1.3-Dichlorobenzene	1	0.022	0.022	0.022
1,4-Dichlorobenzene	3	0.017666667	0.03	0.01
1-Decene	1	0.017	0.017	0.017
1-Ethyl-3-methylevelohexane (c,t)	2	0.0295	0.034	0.025
I-Methylnaphthalene	2	0.00945	0.012	0.0069
1-Pentene, 2,4,4-trimethyl-	1	0.013	0.013	0.013
1-bromoadamantane		1.9	1.9	1.9
1H-Indene, 2,3-dihydro-1,3-dimethyl-	1	0.0082	0.0082	0.0082
2-Bicyclo[4.3.1]decan-10-one	1	0.022	0.022	0.022
2-Octene, 2.6-dimethyl-	1	0.017	0.017	0.017
3.5-Dimethyl-3-heptene		0.083	0.083	0.083
4.7-Methano-111-indene. octahydro-	1	0,022	0.022	0.022
4-Undecene, 6-methyl-	1	0.066	0.066	0.066
4-tert-ButyItoluene	1	0.0072	0.0072	0.0072
5-Eicosyne		0.0023	0.0023	0.0023
Adamantane, 1.3-dimethyl-	2	0.8155	1.6	0.031
Aromatic Hydrocarbon		0.0360875	0.17	0.006

	Frequency of			
Analyte	Detection	Average Result	Maximum Result	Minimum Result
Azulene	1	0.33	0.33	0.33
Benzene, (1,1-dimethylpropyl)-	1	0.012	0.012	0.012
Benzene, (1-ethylpropyl)-	1	0.0075	0.0075	0.0075
Benzene, (2-methyl-1-butenyl)-	I	0.0088	0.0088	0.0088
Benzene, 1.2.4,5-tetramethyl-	4	0.02775	0.049	0.015
Benzene, 1.2-diethyl-	1	0.035	0.035	0.035
Benzene, 1.3-dimethyl-5-(1-methylethyl)-	2	0.0069	0.0071	0.0067
Benzene, 1,4-diethyl-	2	0.00695	0.0073	0.0066
Benzene, 1-ethyl-2,3-dimethyl-	2	0.0285	0.035	0.022
Benzene, 1-ethyl-2,4-dimethyl-	1	0.0074	0.0074	0.0074
Benzene, 1-ethyl-3,5-dimethyl-	2	0.0195	0.028	0.011
Benzene, 1-ethyl-3-(1-methylethyl)-	1	0.023	0.023	0.023
Benzene, 1-ethyl-4-(1-methylethyl)-	1	0.018	0.018	0.018
Benzene, 1-methyl-2-(1-methylethyl)-	1	0.036	0.036	0.036
Benzene, 1-methyl-3-(1-methylethyl)-	2	1.664	3.3	0.028
Benzene, 1-methyl-3-propyl-	1	0.012	0.012	0.012
Benzene, 2,4-dimethyl-1-(1-methylethyl)-	1	0.0082	0.0082	0.0082
Benzene, 2-ethyl-1,3-dimethyl-	1	0.057	0.057	0.057
Benzene, 4-ethyl-1,2-dimethyl-	3	0.0132	0.022	0.0068
Benzene, diethyl-	1	0.0093	0.0093	0.0093
Bicyclo[2.2.1]heptane, 2-butyl-	I	0.0066	0.0066	0.0066
Bicyclo[3,3,1]nonane	ı	0.015	0.015	0.015
Bicyclo[4.1.0]heptan-3-one,4,7,7-trimethyl-, [1R!	3	0.1319	0.35	0.0067
Bromofluoromethane	1	0.047	0.047	0.047
Cyclic Hydrocarbon	20	0.132186957	1.4	0.0066
Cyclodecene	1	0.06	0.06	0.06
Cycloheptane, methyl-	2	0.0585	0.098	0.019
Cyclohexane, (2-methylpropyl)-	1	0.012	0.012	0.012
Cyclohexane, 1,1,2,3-tetramethyl-	2	0.0115	0.012	0.011
Cyclohexane, 1,1,2-trimethyl-	1	0.081	0.081	0.081
Cyclohexane, 1,1,3,5-tetramethyl-,trans-	1	0.0081	0.0081	0.0081
Cyclohexane, 1,1,3-trimethyl-	.3	0.834	2.4	0.037
Cyclohexane, 1,1-dimethyl-2-propyl-	I	0.076	0.076	0.076
Cyclohexane, 1,2,3-trimethyl-	1	0.055	0.055	0.055
Cyclohexane, 1,2,3-trimethyl-, (1.alpha.,2.alpha.	1	0.018	0.018	0.018
Cyclohexane, 1,2,3-trimethyl-,(1,alpha,,2,beta!	3	0.0221	0.04	0.0063
Cyclohexane, 1,2,4-trimethyl-	2	0.036	0.055	0.017
Cyclohexane, 1,2,4-trimethyl-,(1,alpha,,2,beta,.!	1	0.027	0.027	0.027
Cyclohexane, 1,2-diethyl-1-methyl-	2	0.7215	1.4	0.043
Cyclohexane, 1.2-diethyl-3-methyl-	3	0.551666667	1.2	0.025
Cyclohexane, 1,2-dimethyl-, cis-	1	0.0072	0.0072	0.0072
Cyclohexane, 1.3-dimethyl-, trans-	2	1.612	3.2	0.024
Cyclohexane, 1,4-dimethyl-	1	0.046	0.046	0.046
Cyclohexane, 1-ethyl-2-methyl-, cis-	1	0.064	0.064	0.064
Cyclohexane, 1-ethyl-4-methyl-, cis-	2	0.067	0.11	0.024
Cyclohexane, 1-ethyl-4-methyl-,trans-	3	1.98525	5	0.008
Cyclohexane, 1-methyl-2-propyl-	3	0.089333333	0.18	0.015
Cyclohexane, 2.4-diethyl-1-methyl-		0,099	0.099	0.099
Cyclohexane, 2-butyl-1,1,3-trimethyl-	3	0.075966667	0.12	(),()() ⁷ 9

	Frequency of			
Analyte	Detection	Average Result	Maximum Result	Minimum Result
Cyclohexane, 2-ethyl-1,3-dimethyl-	l	0.011	0.011	0.011
Cyclohexane, butyl-	4	0.5294	1.7	0.019
Cyclohexane, ethyl-	1	0.012	0.012	0.012
Cyclohexane, hexyl-	1	0.021	0.021	0.021
Cyclohexane, methyl-	3	4.486666667	13	0.15
Cyclohexane, pentyl-	2	0.16	0.19	0.13
Cyclohexane, propyl-	2	1.563	3.1	0.026
Cyclohexanone, 2-ethyl-	2	0.0715	0.091	0.052
Cyclohexanone, 2-methyl-5-(1-methylethenyl)-, tr!	1	0.02	0.02	0.02
Cyclopentane, 1-methyl-1-(2-methyl-2-propenyl)-	ı	0.124	0.22	0.028
Cyclopentane, 1-methyl-2-propyl-	1	0.012	0.012	0.012
Cyclopentane, 1-methyl-3-(2-methylpropyl)-	2	0.649	1.2	0.098
Cyclopropane, 1,2-dimethyl-, trans-	!	0.0081	0.0081	0.0081
Cyclopropane, 1-(2-methylbutyl)-1-methylpropyl)-	I	0.033	0.033	0.033
Cyclopropane, 1-butyl-1-methyl-2-propyl-	1	0.039	0.039	0.039
Cyclopropane, 1-methyl-2-pentyl-	l	0.014	0.014	0.014
Cylohexane, 1,3,5-trimethyl-	1	0.0069	0.0069	0.0069
Decane	2	0.0099	0.013	0.0068
Decane, 2,6,6-trimethyl-	1	0.011	0.011	0.011
Decane, 2-methyl-	2	0.0071	0.0076	0.0066
Decane, 3,3,4-trimethyl-	1	0.16	0.16	0.16
Decane, 3-methyl-	6	0.245	1.2	0.027
Decane, 4-methyl-	10	0.14818	0.4	0.0068
Dodecane	1	0.032	0.032	0.032
Dodecane, 3-methyl-	1	0.084	0.084	0.084
Dodecane, 6-methyl-	2	0.079	0.12	0.038
Heptane	1	6.4	6.4	6.4
Heptane, 2-methyl-	1	12	12	12
Heptane, 3-ethyl-2-methyl-	6	0.064833333	0.17	0.014
Heptane, 4-propyl-	1	0.007	0.007	0.007
Heptane, 5-ethyl-2-methyl-	1	0.013	0.013	0.013
Hexane	1	0.17	0.17	0.17
Naphthalene	6	0.047	0.19	0.006
Naphthalene, 1,2,3,4-tetrahydro-1-methyl-	1	0.0093	0.0093	0.0093
Naphthalene, 1,2,3,4-tetrahydro-5-methyl-	1	0.0095	0.0095	0.0095
Naphthalene, decahydro-	5	0.04478	0.14	0,0069
Naphthalene, decahydro-, trans-	9	0.48444444	3.7	0.017
Naphthalene, decahydro-2,3-dimethyl-	2	0.0385	0.063	0.014
Naphthalene, decahydro-2,6-dimethyl-	1	0.32	0.32	0.32
Naphthalene, decahydro-2-methyl-	7	0.463571429	2.7	0.016
Nonane, 2-methyl-	1	0.029	0.029	0.029
Nonane, 2-methyl-3-methylene-	2	0.02445	0.039	0.0099
Nonane, 3-methyl-	2	0.00895	0.011	0.0069
Nonane, 5-butyl-	1	0.091	0.091	0.091
Nonane, 5-methyl-5-propyl-	1	0.069	0.069	0.069
Octane	1	3.6	3.6	3.6
Octane, 2.3.6-trimethyl-	1	0.085	0.085	0.085
Octane, 2.6-dimethyl-	.1	0.02425	0.036	0.011
Octane, 3.6-dimethyl-	5	0.5768	2.5	0,059

	Frequency of	I		
Analyte	Detection	Average Result	Maximum Result	Minimum Result
Octane, 3-ethyl-	1	0.094	0.094	0.094
Octane, 3-methyl-	1	2	2	2
Octane, 4-ethyl-	2	0.0515	0.071	0.032
Octane, 4-methyl-	1	3.7	3.7	3.7
Octane, 6-ethyl-2-methyl-	2	0.0455	0.053	0.038
Oxygenated Hydrocarbon	6	0.071833333	0.17	0.009
Saturated Hydrocarbon	16	0.123297297	0.76	0.006
Siloxane	10	0.099966667	0.47	0.0078
Tricyclo[3.3.1.13,7]decane	1	0.05	0.95	0.95
Tridecane	1	0.42	0.42	0.42
Undecane	2	0.0255	0.026	0.025
Undecane, 4.6-dimethyl-	1	0.17	0.17	0.17
Undecane, 4,7-dimethyl-	1	0.024	0.024	0.024
Undecane, 6,6-dimethyl-	I	0.015	0.015	0.015
Unknown	8	1.049507692	8.1	0.0096
Unsaturated Hydrocarbon	8	0.126636364	0.49	0.015
cis-1,2-Dichloroethene	ı	0.018	0.018	0.018
cis-1-Ethyl-3-methyl-cyclohexane	2	0.035	0.057	0.013
n-Amyleyelohexane	1	0.12	0.12	0.12
n-Propylbenzene	1	0.011	0.011	0.011
p-Isopropyltoluene (p-Cymene)	3	0.031975	0.069	0.0061
sec-Butylbenzene	1	0.016	0.016	0.016

Analyte	Result	Client De	Client Description		% Water
Semivolatile Organics (mg/kg)					
(2-Methylbutyl)cyclohexane	1.9	SC-QE06-SD-1002	(0.50, 1.00)	J	41.4
(6H)Cyclobuta[jk phenanthrene	2.4	SC-QE03-SD-1001	(0.00, 0.50)	J	19.0
(Z)14-Tricosenyl formate	3.2	SC-QW02-SD-902	(0.50, 1.00)	J	22.5
.alphaAmvrin	1.2	SC-QE09-SD-1001	(0.00,0.50)	J	38.7
.alphaPinene	1.3	SC-QE01-SD-1001	(0.00,0.50)	J	55.6
.betaAmyrin	0.82	SC-QE09-SD-1001	(0.00,0.50)	J	38.7
.PsipsiCarotene, 7,7',8,8',11,11',12,12',1!	0.77	SC-QW03-SD-1001	(0.00,0.50)	J ₂	16.1
[1,2'-Binaphthalene]-5,5',8,8'-tetrone, 1',4-dih	0.4	SC-QW01-SD-1003	(0.00,1.50)	Jz	13.7
[1,2'-Binaphthalene]-5,5',8,8'-tetrone, 1',4-dih!	40	SC-QE06-SD-902	(0.50,1.00)	Jz	46.6
1.1'-Bipnenyi, 2 2',3,3',4,4',5,5',6,6'-decafluo!	2	SC-QE07-SD-1002	(0.50,1.00)	Jz	19
1.1'-Biphenyl, 2,2',5.6-tetrachloro-	1.3	SC-QW03-SD-903	(1.00,2.00)	1	23.9
1.1'-Biphenyl, 2.3.4,4'.6-pentachloro-	1.1	SC-QW03-SD-903	(1.00,2.00)	 '	23.9
1.1':2'.1"-Terphenyl, 2.5-dichloro-	3.5	SC-QE07-SD-901	(0.00,0.50)	 '	17.7
1,1':4',1"-Terphenyl, 2,4,6-trichloro-	1.2	SC-QE07-SD-1002	(0.50,1.00)	J	19
1.14-Docosanediol	0.9	SC-QE09-SD-1002	(0.50,1.00)	 '	26
1.2-Benzenedicarboxylic acid, bis(1-methylethyl)!	2	SC-QW03-SD-902	(0.50,1.00)	Jz	52.5
1.2-Benzenedicarboxylic acid, bis(8-methylnonyl)!	17	SC-QW04-SD-901	(0.00,0.50)	Jz	58.3
1,2-Benzenedicarboxylic acid,diisodecyl ester	26	SC-QW04-SD-901	(0.00,0.50)	JZ.	58.3
1,2-Benzenedicarboxylic acid,diisooctyl ester	1.9	SC-QW04-SD-901		+	43.1
	56	SC-QW04-SD-902 SC-QW03-SD-902	(0.50,1.00)	J	
1.2-Benzenedicarboxylic acid.ditridecyl ester 1.22-Docosanediol		1	(0.50,1.00)	J	52.5
	0.23	SC-QW06-SD-901	(0.00,0.50)	J	16.3
1.3.5-Triazine, 2-(butylthio)-4.6-bis(trichlorom!	0.26	SC-QE07-SD-1001	(0.00,0.50)	Jz	21
1.3-Cyclohexadiene-1-carboxylic acid, 2,6.6-tri!	0.62	SC-QE11-SD-902	(0.50,1.00)	Jz	13.5
1,3-Dioxolane, 4-ethyl-5-octyl-2,2-bis(trifluoro	0.22	SC-QW04-SD-1003	(0.00,3.00)	J _Z	22.9
1,3-Dioxolane, 4-ethyl-5-octyl-2,2-bis(trifluoro!	1.5	SC-QW02-SD-901	(0.50,0.50)	Jz	69.8
1.4-Methanoazulene, decahydro-4,8,8-trimethyl-9!	0.74	SC-QW04-SD-1001	(0.00,0.50)	Jz	28.1
1-Chlorohexadecane	2.9	SC-QE08-SD-1001	(0.00, 0.50)	J	60.1
1-Cyclohexene-1-butanal, .alpha.,2,6,6-tetrameth	0.36	SC-QW04-SD-1002	(0.50, 1.00)	Jz	16.6
1-Cyclohexene-1-butanal, .alpha.,2,6,6-tetrameth!	0.43	SC-QE05-SD-1001	(0.00,0.50)	Jz	23.1
1-Decene, 5-methyl-	7.4	SC-QE08-SD-1002	(0.50,1.00)	J	30.9
1-Docosanol, acetate	5	SC-QE06-SD-902	(0.50,1.00)	J	46.6
1-Dodecene	0.18	SC-QE05-SD-901	(0.00,0.50)	J	18.0
1-Dotriacontanol	2.2	SC-QW04-SD-903	(2.00,2.50)	J	38.5
1-Eicosanol	1.2	SC-QE02-SD-902	(0.50,1.00)	J	17.0
1-Ethyl-2,2,6-trimethylcyclohexane	1.8	SC-QE10-SD-901	(0.00,0.50)	J	16.0
1-Hentetracontanol	2.9	SC-QE08-SD-1001	(0.00,0.50)	J	60.1
1-Hexacosene	3.6	SC-QW02-SD-901	(0.00,0.50)	J	69.8
1-Hexadecyne	2.5	SC-QE10-SD-901	(0.00,0.50)	J	16.0
1-Hexanone, 1-(4-methyl-5-tridecyl-2-thienyl)-	8.9	SC-QE06-SD-1002	(0.50, 1.00)	J.	41.4
I-Methyl-1-(p-methylphenyl)tetra chlorocyclotriph!	0.79	SC-QE07-SD-902	(0.50, 1.00)	Jz	11.8
1-Naphthalene, decahydro-4a-methyl-1-methylene-!	0.59	SC-QW01-SD-901	(0.00,0.50)	37	21.2
1-Nonadecene	0.2	SC-QW03-SD-902	(0.50, 1.00)	,I	52.5
1-Phenylcyclohexanol-1	0.32	SC-QW07-SD-1001	(0.00,0.50)	J	10.2
1-Undecene, 8-methyl-	0.18	SC-QE05-SD-1001	(0.00,0.50)	J	23.1
10-Undecenoic acid, 2-(acetyloxy)-,methyl ester	0.7	SC-QE01-SD-1001	(0.00,0.50)	J	55.6
10H-Phenothiaphosphine, 7-chloro-2-fluor-10-hydr!	2.6	SC-QE07-SD-1002	(0.50, 1.00)	1/	19
11-Dodecen-1-ol, 2.4.6-trimethyl-,(R,R,R)-	1.5	SC-QE10-SD-901	(0,00,0,50)	1	16.0
HH-Benzo[a]fluorene	4.2	SC-QE08-SD-1001	(0.00,0.50)	I	60.1
HH-Benzo[b]fluorene	3.2	SC-QW05-SD-901	(0,00,0,50)	1	25 ()
14-Pentadecenoic acid	0.52	SC-QF07-SD-1002	(0.50,1.00)	1	19
17-Pentatriacontene	0.53	SC-QE09-SD-901	(0.00,0,50)		22.4

Analyte	Result	Client De	Footnotes	% Water	
IH-3a,7-Methanoazulene, 2.3,4,7,8,8a,-hexahydro-	0.51	SC-QW03-SD-1001	(0.00,0.50)	Jz	16.1
1H-Cyclopenta[1,3]cyclopropa[1,2]benzene, octah!	0.28	SC-QW07-SD-1001	(0.00,0.50)	Jz	10.2
IH-Cycloprop[e]azulene, 1a,2,3,4,4a,-5,6,7b-oct!	0.96	SC-QW03-SD-1001	(0.00,0.50)	Jz	16.1
1H-Cycloprop[E]azulene, decahydro-1,1,7-trimethyl!	0.57	SC-QW01-SD-901	(0.00,0.50)	Jz	21.2
1H-Indene, 2-butyl-5-hexyloctahydro-	3.8	SC-QE03-SD-901	(0.00,0.50)		44.4
HI-Indene, 5-butyl-6-hexyloctahydro-	5	SC-QE02-SD-901	(0.00,0.50)	J	15.6
1H-Indene, octahydro-2,2,4,4,7,7-hexamethyl-	6.1	SC-QW04-SD-903	(2.00,2.50)	J	38.5
1H-Indole, 2-methyl-3-phenyl-	3.4	SC-QW04-SD-903	(2.00,2.50)	,	38.5
1H-Pyrazole, 4-nitro-	0.45	SC-QE01-SD-901	(0.00,0.50)	i i	17.1
2(1H)-Naphthalenone, octahydro-4a,7,7-trimethyl-!	4.1	SC-QW02-SD-901	(0.00,0.50)	12	69.8
2(1H)-Naphthalenone, octahydro-4a-methyl-7-(1-me	0.24	SC-QW04-SD-1002	(0.50,1.00)	Jz	16.6
2(111)-Naphthalenone, octahydro-4a-methyl-7-(1-me!	1.7	SC-QE01-SD-1001	(0.00,0.50)	Jz	55.6
2(1H)-Naphthalenone, octahydro-8a -methyl-, cis-	3.7	SC-QE08-SD-901	(0.00,0.50)	J	59.1
2(11)-Naphthalenone, octahydro-4a, 4-dimethyl-3-(1!	4.4	SC-QE06-SD-1002	(0.50,1.00)	Jz.	41.4
2(1H)-Penanthrenone, 3.4,4a,9,10,10A-hexahydro-6!	1.3	SC-QE07-SD-1002	(0.50,1.00)	J2	19
2.3-Pentadienoic acid, 2-ethyl-4-phenyl-	0.61	SC-QW07-SD-1001	(0.00,0.50)	 	10.2
2,6-Nonadienoic acid, 7-ethyl-9-(3-ethyl-3-methy!	1.9	SC-QW02-SD-901	(0.00,0.50)	Jz.	69.8
2-(Acetoxymethyl)-3-(methyxycarbonyl)biphenylene	0.21	SC-QW04-SD-1003	(0.00,3.00)	J.	22.9
2-Butanone, 4-(2,6,6-trimethyl-2-cyclohexen-1-yl!	1.6	SC-QW02-SD-901	(0.00,0.50)	j	69.8
2-Butene, 1-chloro-3-methyl-	1.6	SC-QE01-SD-1001	(0.00,0.50)	j	55.6
2-Chloro-4,6-di(4-chlorophenyl)pyrimidine	3.4	SC-OE07-SD-901	(0.00,0.50)	j	17.7
2-Cyclopenten-1-one, 3,4-dihydroxy-5-(3-methyl-2!	6.2	SC-QE06-SD-1002	(0.50,1.00)	Jz	41.4
2-Dodecen-1-yl(-)succinic anhydride	9.2	SC-QW04-SD-901	(0.00,0.50)	J. J.	58.3
2-Naphthalenol, 1,6-dibromo-	2.7	SC-QE07-SD-901	(0.00,0.50)	J	17.7
2-Nonvlphenol	4.7	SC-QE07-3D-301	(0.50,1.00)	J	26
2-Octenal, (E)-	5.2	SC-QE06-SD-902	(0.50,1.00)	1	46.6
2-Pentanone, 4-hydroxy-4-methyl-	110	SC-QE01-SD-1001	(0.00,0.50)	JAB	55.6
2-Propenoic acid, 2-cyano-3-[4-diethylamino)phen!	8.8	SC-QE01-SD-1001	(0.00,0.50)	JAB Jz	55.6
2-Propenoic acid, 3-[2,3-dihydro-3-[(4-methoxyph!	1	SC-QE09-SD-1002	(0.50,1.00)	Jz.	26
28-Nor-17.alpha.(H)-hopane	2.1	SC-QW02-SD-901	(0.00,0.50)	1 1/2	69.8
28-Nor-17.alpha.(H)-hopane	2.1	SC-QW02-SD-902	(0.50,1.00)	1	22.5
28-Nor-17.heta.(H)-hopane	9.3	SC-QE03-SD-901	(0.00,0.50)	j	44.4
2H-Indol-2-one, 1,3-dihydro-	3.4	SC-QE03-SD-901	(0.00,0.50)	1	44.4
3.4-Dihydrocyclopenta(cd)pyrene (acepyrene)	1.5	SC-QW05-SD-901	(0.00,0.50)	1	25.0
3.5-Decadiene, 2.2-dimethyl-, (Z.Z)-	1.9	SC-QW02-SD-902	(0.50,1.00)	 	22.5
3-Dodecene. (<i>Z</i> .)-	1.4	SC-QE06-SD-903	(1.00,1.50)	 '	25.8
3-Eicosene, (E)-	1.4	SC-QW02-SD-901	(0.00,0.50)	 	69.8
3-Hexadecene, (z)-	0.21	SC-QE05-SD-1001	(0.00,0.50)	1	23.1
3-Hexauecene, (7)-	0.27	SC-QV07-SD-901	(0.00,0.50)	1	24.3
3-Methyl-p-anisaldehyde	7.9	SC-QW05-SD-901	(0.00,0.50)	1	25.0
3-Octadecene, (E)-	0.43	SC-QE09-SD-901	(0.00,0.50)	- '	22.4
4.7-Dimethyl-1,10-phenanthroline	1.3	SC-QE07-SD-901	(0.00,0.50)	1	17.7
4.7-Methano-1H-indene, octahydro-	0.21	SC-QW06-SD-901	(0.00,0.50)	+ ';	16.3
4-Hexenoic acid, 3-methyl-2,6-dioxo-	6,9	SC-QE06-SD-1002	(0.50,1.00)	'	41.4
4-Undecene, 3-methyl-, (Z)-	5.8	SC-QE08-SD-901	(0.00,0.50)	 	59.1
4-Undecene, 4-methyl-, (Z)-	4.9	SC-QE08-SD-1002	(0.50,1.00)	+ ;	30.9
4H-1-Benzopyran-4-one, 2-(3,4-dihdroxyphenyl)6.8!	50	SC-QE08-SD-1002 SC-QE06-SD-902	(0.50,1.00)	- J	46.6
4H-Cyclopenta[def]phenanthrene	3.3	SC-QE07-SD-901	(0.00,1.00)	1 1/	17.7
5-Octadecene. (E)-	3.8	SC-QW02-SD-901	(0.00,0.50)	1	69,8
5.beta,-Cholest-23-ene. (Z)-	0.27	SC-QW02-SD-1002	(0.50,1.00)	- '	16.6
6-(3-Methyl-3-cyclohexenyl)-2-methyl -2,6-heptadi	0.2.	SC-QW04-SD-1002 SC-QW03-SD-1001	(0.00,0.50)	1	16.1
6-Octen-1-ol, 3,7-dimethyl-, acetate	6.4	SC-QW03-SD-1001 SC-QW02-SD-902	(0.50,1.00)		22.5

Analyte	Result	Client D	escription	Lootnotes	% Water
6-Octenal, 3,7-dimethyl, (R)-	0.26	SC-QE11-SD-902	(0.50,1.00)	Footnotes	
6H,8H-Benzo[10,11]chryseno[1,12-cd]pyran-6,8-dio!	24	SC-QE06-SD-902	(0.50,1.00)	J.	13.5
7-Amino-2,3-dihydro-5-phenyl-1H-1,4-benzidazepi!	0.57	SC-QE09-SD-901		Jz	46.6
7-Tetradecene, (E)-	1.2	SC-QE10-SD-901	(0.00,0.50)	Jz	22.4
7H-Benz[de]anthracen-7-one	2		(0.00,0.50)		16.0
7H-Benzo[c]fluorene	0.94	SC-QW05-SD-901 SC-QE03-SD-1001	(0.00,0.50)]	25.0
8-Decenoic acid, 5-ethenyl-3,5,9-trimethyl-, met!			(0.00,0.50)	J	19.0
9.10-Anthracenedione	1.8	SC-QE09-SD-1001 SC-QW05-SD-901	(0.00,0.50)	Jz	38.7
9.19-Cyclolanost-25-en-3-ol, 24-methyl-, (3.beta!			(0.00,0.50)	1	25.0
9-Borabicyclo[3.3.1]nonane, 9-hydroxy-	2.8	SC-QE01-SD-1001	(0.00,0.50)	Jz	55.6
9-Eicosene, (E)-	2.1	SC-QE10-SD-901	(0.00,0.50)	J	16.0
9-Oxabicyclo[6.1.0]nonane, 1-methylcis-	0.28	SC-QE05-SD-1001	(0.00,0.50)	J	23.1
Acetamide, N-(2,6-dimethylphenyl)-	3.4	SC-QE06-SD-901	(0.00,0.50)	1	66.0
Acetamide, N-(3-methylphenyl)-		SC-QE10-SD-902	(0.50,1.00)	J	16.3
Acetamide, N-methyl-N-[4-[4-methoxy-1-hexahydrop!	1	SC-QE11-SD-901	(0.00,0.50)	J	16.8
Acetic acid. [4-(1,1-dimethylethyl)phenoxy]-, me!	27	SC-QE06-SD-902	(0.50,1.00)	12	46.6
Alnulin		SC-QW02-SD-902	(0.50,1.00)	Jz	22.5
Androst-5-en-3-ol, 4,4'dimethyl-, (3.beta.)-		SC-QW04-SD-1002	(0.50, 1.00)	J	16.6
Androstane-3.11,17-trione,(5.alpha.)-		SC-QW03-SD-1001	(0.00, 0.50)	J	16.1
Anthracene Anthracene		SC-QE07-SD-1001	(0.00, 0.50)	J	21
		SC-QW04-SD-901	(0.00,0.50)	J	58.3
Anthracene, 1-methyl-	1.5	SC-QW04-SD-902	(0.50,1.00)	J	43.1
Anthracene, 2-methyl-		SC-QE03-SD-1001	(0.00,0.50)	J	19.0
Anthracene, 9-dodecyltetradecahydro-		SC-QE02-SD-1001	(0.00, 0.50)	J	26.8
Baccharane		SC-QW04-SD-1002	(0.50, 1.00)	J	16.6
Benzaldehyde, 4-hydroxy-3-methoxy-5-nitro-		SC-QW03-SD-901	(0.00, 0.50)	J	33.8
Benzene, (2-methyl-1-propenyl)-		SC-QW07-SD-1001	(0.00,0.50)	J	10.2
Benzene, 1,1',1"-[1-bromomethyl)-2-methoxy-1-et!		SC-QE01-SD-1001	(0.00,0.50)	Jz	55.6
Benzene, 1,1'-(1,3-butadiyne-1,4-diyl)bis-		SC-QW05-SD-901	(0.00,0.50)	J	25.0
Benzene, 1.1'-ethylidenebis[3,4-dimethyl-	0.7	SC-QE01-SD-901	(0.00,0.50)	J	17.1
Benzene, 1,2,4,5-tetramethyl-		SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Benzene, 1,4-bis(1,1-dimethylethyl)-	4.4	SC-QW04-SD-903	(2.00, 2.50)	J	38.5
Benzene, 1-methoxy-4-pentyl-	0.22	SC-QE10-SD-903	(0.00,3.00)		16.8
Benzene, 1-methyl-2-(1-methylethyl)-	3.8	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Benzene, 4-ethyl-1,2-dimethyl-		SC-QW07-SD-1001	(0.00,0,50)	J	10.2
Benzo(a)pyrene		SC-QE07-SD-902	(0.50, 1.00)	J	11.8
Benzo(b)fluoranthene	9.4	SC-QE06-SD-901	(0.00,0.50)	J	66 ()
Benzo(c)phenanthrene		SC-QE03-SD-1001	(0.00,0.50)	J	19.0
Benzo(e)pyrene		SC-QE03-SD-1001	(0.00, 0.50)	J	19 ()
Benzo(j)fluoranthene	8.8	SC-QE03-SD-901	(0.00,0.50)		44.4
Benzo(k)fluoranthene	10	SC-QE07-SD-901	(0.00,0.50)	J	17.7
Benzo[a]pyrene, 4,5-dihydro-	1.3	SC-QW05-SD-901	(0.00,0.50)		25.0
Benzo[b]naphtho[2,3-d]furan		SC-QE07-SD-1002	(0.50,1.00)	J	19
Benzo[b]naphtho[2,3-d]thiophene		SC-QW05-SD-901	(0.00,0.50)	J	25.0
Benzo[ghi]fluoranthene	2.1	SC-QW05-SD-901	(0.00,0.50)	J	25.0
Benzofuran, 2,3-dihydro-7-methoxy-3-methyl-5-(1-!	1.5	SC-QE07-SD-1002	(0.50, 1.00)	Jz	19
Benzoic acid, 2-(4-methylbenzoyl)-	1.5	SC-QW05-SD-901	(0.00,0.50)	J	25.0
Bicyclo[5.1.0]octane, 8-(1 -methylethylidene)-	0.3	SC-QW03-SD-1001	(0.00,0.50)	1	16.1
C(14a)-Homo-27-nor-14.betagammaceran-3.alpha!	3.5	SC-QF02-SD-1001	(0.00,0.50)	1/2	26.8
C(14a)-Homo-27-norgammacer-13-en-21-ol, 3-methox!	0.92	SC-QE09-SD-1001	(0.00,0.50)	12	38.7
Caprolactam	0.25	SC-QF01-SD-901	(0.00,0.50)	J	17.1
Carbazole	1.8	SC-QW05-SD-901	(0,00,0.50)	1	25 ()
Cary ophy llene	0.22	SC-QW07-SD-901	(0.00,0.50)	1	24.3

Analyte	Result	Client I	Client Description		% Water
Cholest-23-ene, (5.beta.)-	3.7	SC-QE03-SD-901	(0.00,0.50)	Footnotes	44.4
Cholestan-3-ol, 2-methylene-, (3.beta.,5.alpha.)-	2.4	SC-QE02-SD-1001	(0.00,0.50)	'	26.8
Cholestan-3-one, 4,4-dimethyl-,(5,alpha.)-	1.9	SC-QE09-SD-1002	(0.50,1.00)	'	26
Cholestane, 4,5-epoxy-, (4.alpha.,5.alpha.)-	3	SC-QE09-SD-1002	(0.50,1.00)	 	26
Chromone, 3,5-dibromo-6-hydroxy-2-methyl-	4.2	SC-QE07-SD-1002	(0.50,1.00)	, ,	<u>20</u>
Citronella		SC-QW06-SD-901	(0.00,0.50)	 ' -	
Cyclododecane	4.9	SC-QE06-SD-901	(0.00,0.50)	+	16.3
Cyclohexane, (1-ethylpropyl)-		SC-QE08-SD-901	(0.00,0.50)	J	66.0
Cyclohexane, (1-methylpropyl)-		SC-QE08-SD-1001	(0.00,0.50)	<u> </u>	59.1
Cyclohexane, (2-methylpropyl)-		SC-QE09-SD-901		J	60.1
Cyclohexane, 1.1-dimethyl-2,4-bis (1-methyletheny!		SC-QE01-SD-1001	(0.00,0.50)	J	22.4
Cyclohexane, 1,2.3-trimethyl-,(1.alpha.,2.alph!		<u> </u>	(0.00,0.50)	Jz	55.6
Cyclohexane, 1,2-dimethyl-, trans-		SC-QE08-SD-1002 SC-QW06-SD-1001	(0.50,1.00)	Jz	30.9
Cyclohexane, 1,2-dimethyl-3-pentyl-4-propyl-			(0.00,0.50)		12.1
Cyclohexane, 1,3-dimethyl-, cis-		SC-QW04-SD-903	(2.00,2.50)	J	38.5
Cyclohexane, 1.4-dimethyl-		SC-QE07-SD-902	(0.50,1.00)	J	11.8
Cyclohexane, 1,4-dimethyl-, cis-		SC-QW03-SD-903	(1.00,2.00)	J	23.9
Cyclohexane, 1.4-dimethyl-, trans-		SC-QW03-SD-902	(0.50, 1.00)	J	52.5
Cyclohexane, 1.5-diethenyl-2,3-dimethyl-		SC-QW02-SD-1001	(0.00,0.50)	J	10.4
		SC-QE09-SD-1002	(0.50,1.00)	J	26
Cyclohexane, 1-(1,5-dimethylhexyl)-4-(4-methylpe!		SC-QE07-SD-901	(0.00,0.50)	Jz	17.7
Cyclohexane, 2,4-diethyl-1-methyl-		SC-QE10-SD-901	(0.00,0.50)	J	16.0
Cyclohexane, 2-butyl-1,1,3-trimethyl-		SC-QE08-SD-1002	(0.50, 1.00)	J	30,9
Cyclohexane, 2-propenyl-		SC-QE06-SD-903	(1.00, 1.50)	J	25.8
Cyclohexane, 3,4-bis(1-methylethenyl)-1,1-dimeth!		SC-QE08-SD-901	(0.00, 0.50)	Jz	59.1
Cyclohexane,1,2,4,5-tetraethyl-, (1.alpha.,2.alp!		SC-QW02-SD-901	(0.00, 0.50)	Jz	69.8
Cyclohexanone		SC-QE06-SD-903	(1.00, 1.50)	J	25.8
Cyclohexene, 1-methyl-4-(5-methyl-1 -methylene-4!	0.25	SC-QW03-SD-1001	(0.00,0.50)	Jz.	16.1
Cyclopentane, 1,1'-[3-(2-cyclopentylethyl)-1,5-p!		SC-QW02-SD-902	(0.50, 1.00)	Jz.	22.5
Cyclopentane, 1,1,3-trimethyl-		SC-QE10-SD-901	(0.00,0.50)	J	16.0
Cyclopentane, 1-butyl-2-pentyl-	3.1	SC-QE08-SD-1001	(0.00, 0.50)	J	60.1
Cyclopentane, 1-hexyl-3-methyl-	1.1	SC-QE09-SD-901	(0.00, 0.50)	j	22.4
Cyclopentane, 1-methyl-3-(1-methylethyl)-	4	SC-QE06-SD-902	(0.50, 1.00)	J	46.6
Cyclopentane, 1-pentyl-2-propyl-	4.5	SC-QE08-SD-901	(0.00,0.50)	J	59.1
Cyclopentanone, 2-methyl-4-(2-methylpropyl)-		SC-QE09-SD-901	(0.00,0.50)	J	22.4
Cyclopropa[5,6]-33-norgorgostan-3-ol, 3',6-dihyd		SC-QW03-SD-1001	(0.00,0.50)	j	16.1
Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-m!		SC-QE01-SD-1001	(0.00,0.50)	Jz	55.6
Cyclopropanenonanoic acid, 2-[(2-butyleyclopropy!		SC-QW05-SD-901	(0.00,0.50)	Jz	25.0
Cyclotetracosane		SC-QW03-SD-902	(0.50, 1.00)	1 1	52.5
Cyclotetradecane, 1,7,11-trimethyl-4-(1-methylet!		SC-QE06-SD-902	(0.50,1.00)	i jz	46.6
Cyclotriacontane		SC-QE08-SD-902	(0.50,1.00)	1 "	22.2
D-Friedoolean-14-ene, 3-methoxy-,(3.beta.)-		SC-QE11-SD-1001	(0.00,0.50)	'	12.4
d-Galactitol, 2-(acetylmethylamino)-2-deoxy-3,4,!		SC-QE03-SD-1001	(0.00,0.50)	Jz	19.0
D-Homoandrostane, (5.alpha.,13.alpha.)-		SC-QE02-SD-1001	(0.00,0.50)	1 1	26.8
d-Homoandrostane, (5.alpha.,13.alpha.)-		SC-QE03-SD-901	(0.00,0.50)	1 1	44.4
Decahydro-9-ethyl-4,4,8,10-tetramethyl naphthalen	1	SC-QW04-SD-1002	(0.50,1.00)	 '	
Decane		SC-QE06-SD-902	(0.50,1.00)	 	16.6
Decane, 2,6,7-trimethyl-		SC-QE06-SD-902	(0.50,1.00)	J	46.6
Decane, 2-methyl-		SC-QE08-SD-1002	(0.50,1.00)	J	46.6
Decane, 3,8-dimethyl-		SC-QE08-SD-1002	(0.50,1.00)	 	30.9
Decane, 3-methyl-		SC-QE08-SD-1002	(0.50,1.00)		30.9
Decune, 4-methyl-		SC-QE08-SD-1002		J	30.9
Decane, 4-methyl-	3.3	X(=()1-()8-X11-1000	(0.50, 1.00)		30.9

Analyte	Result	Client D	Client Description		% Water
Decanedioic acid, didecyl ester	1.3	SC-QE10-SD-901	(0.00.0.50)	Footnotes	16.0
Dextro-camphoric acid	0.2	SC-QW04-SD-1002	(0.50,1.00)	 	16.6
Dibenz(a,j)acridine	0.33	SC-QE07-SD-901	(0.00,0.50)	 	17.7
Dibenzothiophene	T I	SC-QE03-SD-1001	(0.00,0.50)	j	19.0
Docosane	1.2	SC-QE03-SD-1001	(0.00,0.50)	'	19.0
Docosane, 2,21-dimethyl-	9.6	SC-QE08-SD-1001	(0.00,0.50)	,	60.1
Dodecane	11	SC-QE08-SD-1002	(0.50,1.00)	'	30.9
Dodecane, 2.6,10-trimethyl-	6.8	SC-QE08-SD-901	(0.00,0.50)	j	59.1
Dodecane, 2.6.11-trimethyl-	9.1	SC-QE06-SD-902	(0.50,1.00)	J	46.6
Dodecane, 2,7,10-trimethyl-	0.98	SC-QE06-SD-903	(1.00,1.50)	J J	
Dodecane, 2-cyclohexyl-, 2-cyclohexyl-		SC-QE06-SD-1001	(0.00,0.50)	 	25.8
Dodecane, 2-methyl-8-propyl-		SC-QE08-SD-1001]	40.9
Dodecane, 4,6-dimethyl-		SC-QE08-SD-1002	(0.50,1.00)	<u> </u>	30.9
Dodecane, 6-methyl-		SC-QE00-SD-1002 SC-QW04-SD-903	(0.50,1.00)		41.4
Eicosane		SC-QE06-SD-903	(2.00,2.50)	!	38.5
Eicosane, 9-octyl-			(0.50,1.00)	J	46.6
Ergost-22-en-3-ol, (3.beta.,5.alpha.,22F,24R)-		SC-QE08-SD-1001	(0.00,0.50)	J	60.1
Ergost-5-en-3-ol. (3.beta.)-		SC-QW01-SD-901	(0.00,0.50)	J	21.2
Estra-1.3.5(10)-trien-17-one, 2-hydroxy-		SC-QE01-SD-1001	(0.00,0.50)	J	55.6
Estra-1.3.5(10)-trien-17-one, 2-nydroxy-		SC-QE07-SD-1002	(0.50,1.00)	J	19
Ethanoic acid, S-methyl ester		SC-QE07-SD-1002	(0.50,1.00)	J	19
		SC-QE10-SD-903	(0.00,3.00)	J	16.8
Formamide, N'-(m-acetylphenyl)-N,N-dimethyl- Fumariline		SC-QE01-SD-901	(0.00,0.50)	J	17.1
		SC-QE08-SD-1002	(0.50,1.00)	J	30.9
Halogenated Compound		SC-QE10-SD-901	(0.00,0.50)	J	16.0
Heneicosane		SC-QE08-SD-1001	(0.00,0.50)	Jz.	60.1
Heneicosane, 3-methyl-		SC-QE05-SD-1001	(0.00,0.50)	J	23.1
Heptacosane		SC-QE08-SD-1001	(0.00,0.50)	J	60.1
Heptadecane		SC-QE08-SD-1001	(0.00,0.50)	J	60.1
Heptadecane, 2.6,10,15-tetramethyl-		SC-QE06-SD-902	(0.50, 1.00)	J	46.6
Heptadecane, 2,6-dimethyl-	5.6	SC-QE08-SD-1001	(0.00,0.50)	J	60.1
Heptadecane, 3-methyl-	0.87	SC-TR01-SD-901	(0.00,0.50)	Ţ	31.5
Heptadecane, 9-octyl-	1.9	SC-QW03-SD-1001	(0.00,0.50)	J	16.1
Heptane, 3-ethyl-2-methyl-	1.3	SC-QE06-SD-903	(1.00,1.50)	j	25.8
Heptane, 4-ethyl-	4.6	SC-QE08-SD-1002	(0.50, 1.00)	j	30.9
Hexacosane	13	SC-QE08-SD-1001	(0.00, 0.50)		60.1
Hexadecane	5.5	SC-QE08-SD-1001	(0.00,0.50)		60.1
Hexadecane, 2,6,10,14-tetramethyl-	7.2	SC-QE06-SD-1001	(0.00,0,50)		40.9
Hexadecane, 2.6.11.15-tetramethyl-	1.7	SC-QE06-SD-903	(1.00,1.50)		25.8
Hexadecane, 2-methyl-	4.5	SC-QE06-SD-1001	(0.00,0.50)	1	40.9
Hexadecane, 7-methyl-	0.98	SC-QW03-SD-903	(1.00,2.00)		23.9
Hexadecanoic acid		SC-QW02-SD-1001	(0.00,0.50)	1 1	10.4
Hexadecanoic acid, 2-hydroxy-,methyl ester		SC-QE06-SD-1001	(0.00,0.50)	 	40.9
Hexanoic acid		SC-QW07-SD-1001	(0.00,0.50)	j	10.2
Hexatriacontane		SC-QE06-SD-1002	(0.50,1.00)	, , ,	41.4
Imidazole, 2.5-díbromo-4-phenyl-		SC-QE07-SD-1001	(0.00,0.50)	'	21
Imidazole, 4-amino-5-ethyloxycarbonyl-		SC-QE07-SD-1001	(0.50,1.00)	 ' ;	
Isooctane, (ethenyloxy)-		SC-QE08-SD-902	(0.50,1.00)		11.8
Longifolenaldehyde		SC-QW02-SD-902	(0.50,1.00)		22.5
Lupeol		SC-QW04-SD-1002	(0.50,1.00)	 	
n-Amyleyelohexane		SC-QE08-SD-1002	(0.50,1.00)		16.6
N-Cyano-N',N',N'',N''-tetramethyl-1,3,5-triazine!		SC-QE07-SD-1001	(0.30,1.00)		30.9
n-Octacosane		SC-QE07-SD-1002	(0.50,1.00)	1/	21

Analyte	Result	Client D	escription	Footnotes	% Water
Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl	0.29	SC-QW03-SD-1001	(0.00, 0.50)	1	16.1
Naphthalene, 1.2.3,4-tetrachloro-	2.6	SC-QE07-SD-901	(0.00,0.50)	j	17.7
Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-!	1.9	SC-QE01-SD-901	(0.00,0,50)	Jz	17.1
Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-di!	0.69	SC-QE07-SD-1001	(0.00,0.50)	Jz	21
Naphthalene, 1,3,7-trichloro-	1.7	SC-QE07-SD-1002	(0.50,1.00)	j j	19
Naphthalene, 1,8-dimethyl-	2.3	SC-QW04-SD-903	(2.00,2.50)	J	38.5
Naphthalene, 2,3,6-trichloro-	1.3	SC-QE07-SD-901	(0.00,0,50)	1 1	17.7
Naphthalene, 2,3-dichloro-		SC-QE09-SD-1001	(0.00,0.50)	1 - 1	38.7
Naphthalene, 2.3-dimethyl-	0.55	SC-QE07-SD-1002	(0.50, 1.00)	 ' 	19
Naphthalene, 2,7-dichloro-	0.18	SC-QE11-SD-902	(0.50,1.00)	 	13.5
Naphthalene, decahydro-2,6-dimethyl-	0.35	SC-QE08-SD-902	(0.50,1.00)	1 1	22.2
Naphthalene, decahydro-2-methyl-	2.9	SC-QE02-SD-1001	(0.00,0.50)	1 1	26.8
Neopentylidenecyclohexane	2.6	SC-QW04-SD-903	(2.00,2.50)	<u>'</u>	38.5
Nitrogen Compound	2.3	SC-QE03-SD-901	(0.00,0.50)	 '	
Nonacosane	6.4	SC-QE06-SD-901	(0.00,0.50)	+	44.4
Nonadecane	4.7	SC-QE06-SD-901	(0.00,0.50)	J	66.0
Nonadecane, 9-methyl-	14	SC-QE08-SD-1001	(0.00,0.50)	J	66.0
Nonahexacontanoic acid	21	SC-QE08-SD-1001	(0.00,0.50)		60.1
Nonane, 3-methyl-	8	SC-QE08-SD-901		!	60.1
Octadecane	30	SC-QE08-SD-1001	(0.00,0.50)	J.	59.1
Octadecane, 1-bromo-	0.3		(0.00,0.50)	J	60.1
Octadecane, 1-chloro-	3.4	SC-QE11-SD-902	(0.50,1.00)	<u> </u>	13.5
Octadecane, 2,6-dimethyl-	13	SC-QE08-SD-1001 SC-QE08-SD-1002	(0.00,0.50)	! !	60.1
Octadecane, 2-methyl-	4.2		(0.50,1.00)	J	30.9
Octane	4.7	SC-QE10-SD-901	(0.00,0.50)	J	16.0
Octane, 2,3,7-trimethyl-		SC-QE08-SD-1002	(0.50,1.00)	J	30.9
Olean-12-ene	4.6	SC-QE06-SD-1001	(0.00,0.50)	J	40.9
Olean-18-ene	0.63	SC-QW03-SD-1001	(0.00,0.50)	J	16.1
Oxirane, hexadecyl-	0.82	SC-QE09-SD-902	(0.50,1.00)	J	19.1
Oxygenated Hydrocarbon	0,4	SC-QE08-SD-902	(0.50,1.00)	J	22.2
P-Terphenyl, 2,4,4",6-tetrachloro-	17	SC-QE02-SD-901	(0.00,0.50)	J	15.6
Pentacosane	1.7	SC-QE07-SD-901	(0.00,0.50)	J	17.7
Pentadecane	15	SC-QE08-SD-1001	(0.00,0.50)	.1	60.1
Pentadecane, 2.6.10.14-tetramethyl-	4.9	SC-QE08-SD-1001	(0.00,0.50)	J	60.1
Pentalene, octahydro-1-(2-octyldecyl)-	11	SC-QE06-SD-902	(0.50,1.00)	J	46.6
Pentatriacontane	2.6	SC-QW04-SD-902	(0.50,1.00)	J	43.1
Pervlene	0.52	SC-QE05-SD-1001	(0.00,0.50)	J	23.1
Phenanthrene, 2-methyl-	7.8	SC-QE08-SD-901	(0.00,0.50)	J	59.1
Phenanthrene, 3-methyl-	1.1	SC-QE03-SD-1001	(0.00,0.50)	J	19.0
		SC-QW05-SD-901	(0.00,0.50)	J	25.0
Phenanthrene, 7-ethenyl-1,2,3,4,4a,4b,5-,6,7,8,8	0.65	SC-QW03-SD-1001	(0.00,0.50)	Jz	16.1
Phenol, 2,4-bis(1-methylethyl)-	0.75	SC-QE11-SD-901	(0.00,0.50)	J	16.8
Phonol. 2-(1.1-dimethylethyl)-	3.2	SC-QE10-SD-901	(0.00,0.50)	J	16.0
Phenol. 2-(1.1-dimethylethyl)-5-methyl-	0.85	SC-QE11-SD-902	(0.50,1.00)	J	13.5
Phenol. 2-methyl-5-(1-methylethyl)-	1.4	SC-QE11-SD-901	(0.00,0.50)	J	16.8
Phenol. 4.4'-butylidenebis[2-(1.1-dimethylethyl)	1.1	SC-QW01-SD-1002	(0.50, 1.00)	Jz	11.1
Phenol. 4-(1.1,3,3-tetramethylbutyl)-	2.6	SC-QW03-SD-903	(1.00,2.00)	J	23.9
Phenol, 4-(1,1-dimethylpropyl)-	3.7	SC-QE09-SD-1002	(0.50,1.00)	J	26
Phenol. 4-(2.2.3.3-tetramethylbutyl)-	6.1	SC-QW03-SD-902	(0.50,1.00)	J	52.5
Phenol, 4-(2.2.4-trimethylpentyl)-	1.9	SC-QE10-SD-901	(0.00,0.50)		16.0
Phenol, 4-(2-methylpropyl)-	6.3	SC-QF09-SD-1002	(0.50,1.00)	ı	26
Phenol. 4-dodecyl-	5 =	SC-QE09-SD-1002	(0.50,1.00)	J	26
Phenol, 4-nonyl-	5.9	SC-QE09-SD-1002	(0.50,1.00)		26

Analyte	Result	Client I	Description	Footnotes	% Water
Phenol, 5-methoxy-2-(3,4,9,10-tetrahydro-8,8-dim!	1.9	SC-QE02-SD-1001	(0.00,0.50)	Jz.	26.8
Phenol, chloro-4-(1,1-dimethylethyl)-,acetate	0.29	SC-QE10-SD-903	(0.00, 3.00)	1	16.8
Phenol, m-tert-butyl-	3.2	SC-QE09-SD-1002	(0.50, 1.00)	j	26
Phenol, nonyl-	6.8	SC-QE10-SD-901	(0.00,0.50)	J	16.0
Phenol-2,6-dimethoxy-4-(2-propenyl)-	2.3	SC-QE01-SD-1001	(0.00,0.50)	j	55.6
Phenothiazino[4,3-c]phenothiazine,8,16-dihydro-	0.27	SC-QE07-SD-1001	(0.00, 0.50)		21
Phosphonic acid, 1,3-propanediylbis-,tetraethyl!	1.9	SC-QE09-SD-1001	(0.00,0.50)	Jz	38.7
Phosphonic difluoride (pentafluorophenyl)-	1.6	SC-QE09-SD-1001	(0.00,0.50)	J	38.7
Phosphoric acid, 2-ethylhexyl diphenyl ester	5.8	SC-QW04-SD-903	(2.00,2.50)	J	38.5
Phthalic acid, allyl ethyl ester	21	SC-QW05-SD-901	(0.00,0.50)	1 1	25.0
Phthalic anhydride	1.8	SC-QE02-SD-1001	(0.00,0.50)	1 1	26.8
Polynuclear Aromatic Hydrocarbon	2.5	SC-QE03-SD-901	(0.00,0.50)	i i	44.4
Propane, 1.3-bis(ethylthio)-	9.5	SC-QE09-SD-1002	(0.50,1.00)	j	26
Pyrazine, 3.5-diethyl-2-methyl-	3.2	SC-QW05-SD-901	(0.00,0.50)		25.0
Saturated Hydrocarbon	11	SC-QW04-SD-903	(2.00,2.50)	j	38.5
Silane, chlorotripropyl-	0.7	SC-QE11-SD-902	(0.50,1.00)	 	13.5
Siloxane		SC-QE02-SD-902	(0.50,1.00)	, j	17.0
Squalene		SC-QE03-SD-901	(0.00,0.50)	- '	
Stannane, chlorotris(2-methylpropyl)-	4.9	SC-QE03-SD-901	(0.00,0.50)	J J	44.4
Sterol Sterol	1.9	SC-QW07-SD-901	(0.00,0.50)	 	44.4
Stigmast-4-en-3-one		SC-QW03-SD-1001		J ,	24.3
Stigmast-5-en-3-ol-, (3.beta.,24S)-		SC-QW02-SD-901	(0.00, 0.50)	J .	16.1
Sulfur, mol. (S8)		SC-QE02-SD-1001	(0.00,0.50)	J J	69.8
Terphenyl, 2,5,4-trichloro-		SC-QE07-SD-1001		J. J	26.8
Tetracosane	15	SC-QE07-SD-1001 SC-QE06-SD-1001	(0.00,0.50)	J.	21
Tetracosatetraene, 2,6,10,15,19,23-hexamethyl-		SC-QE06-SD-1001 SC-QE07-SD-1001	(0.00,0.50)	J. J	40.9
Tetradecanal	3.7		(0.00,0.50)	J ,	21
Tetradecane	8	SC-QE10-SD-901	(0.00,0.50)	J	16.0
Tetradecane, 1-bromo-		SC-QE08-SD-1002	(0.50,1.00)	J	30.9
Tetratetracontane		SC-QE09-SD-901	(0.00,0.50)	J	22.4
Toluene, 4-acetylamino-		SC-QE06-SD-903	(1.00,1.50)	1	25.8
Triacontane	2.5	SC-QE10-SD-901	(0.00,0.50)	J	16.0
Tricosane		SC-QE02-SD-902	(0.50,1.00)	J	17.0
Tricyclo[4.3.0.07,9]nonane, 2,2,5,5,8,8-hexamet!	14	SC-QE08-SD-901	(0.00,0.50)	J	59.1
Tricyclo[4.3.1.13,8]undecane, 1-chloro-	7	SC-QE03-SD-901	(0.00,0.50)	Jz	44.4
Tricyclo[4.3.1.13,8]undecane;1-cnioro- Tricyclo[4.3.1.13,8]undecane-3-carboxylic acid, !	2.7	SC-QW04-SD-903	(2.00,2.50)	J	38.5
Tridecane Tridecane	5.6	SC-QE06-SD-1002	(0.50,1.00)	Jz	41.4
Tridecane, 2-methyl-	6.9	SC-QE06-SD-901	(0.00,0.50)	J	66.0
	1.3	SC-QE02-SD-902	(0.50, 1.00)	J	17.0
Tridecane, 5-propyl-	6.4	SC-QE06-SD-902	(0.50,1.00)	J	46.6
Tridecane, 6-propyl-		SC-QE01-SD-901	(0.00,0,50)	J	17.1
Tridecanol	0.73	SC-QE09-SD-901	(0.00,0.50)	J	22.4
Triphenylene	1.7	SC-QW05-SD-901	(0.00,0.50)	J	25.0
Tritetracontane	8.4	SC-QE06-SD-902	(0.50,1.00)	J	46.6
Undecane, 2,5-dimethyl-	2	SC-QE06-SD-903	(1.00,1.50)	J	25.8
Undecane, 2.6-dimethyl-	7.4	SC-QE08-SD-901	(0.00,0.50)	J	59.1
Undecane, 2.8-dimethyl-	7.6	SC-QE08-SD-1002	(0.50,1.00)	J	30.9
Undecane, 2-methyl-	3.7	SC-QE08-SD-1002	(0.50,1.00)	J	30.9
Undecane, 3,6-dimethyl-	2.2	SC-QW03-SD-902	(0.50,1.00)	J	52.5
Undecane, 3,8-dimethyl-	0.89	SC-QE02-SD-902	(0.50,1.00)	J	17.0
Undecane, 4.6-dimethyl-	0.63	SC-QF08-SD-902	(0.50,1.00)	J	22.2
Undecane, 4-methyl-	4.2	SC-QF08-SD-1002	(0.50,1.00)	J	30.9
Unknown	0,41	SC-TR01-SD-901	(0.00,0.50)	J	315

Analyte	Result	Client D	Footnotes	% Water	
Unsaturated Hydrocarbon	3.3	SC-QE10-SD-901	(0.00,0.50)		16.0
Urs-12-ene	0.91	SC-QE09-SD-1001	(0.00,0.50)	1	38.7
Urs-12-ene, 3-methoxy-, (3.beta.)-	0.47	SC-QW07-SD-1002	(0.50,1.00)		18.9
Urs-20-en-16-ol, (16.beta.,18.alpha.,19.alpha.)-	2.9	SC-QW02-SD-901	(0.00,0.50)	 	69.8
Vitamin E	14	SC-QE06-SD-901	(0.00.0.50)	+ ;	66.0
Volatile Organics (mg/kg)			(0.00,0.20)	†	()(),()
.alphaPinene	0.0065	SC-QW07-SD-1001	(0.00, 0.50)	<u> </u>	10.2
1.1.3.3.5-pentamenthylevelohexane	0.43	SC-QE02-SD-1001	(0.00,0.50)	j	26.8
1.1.4-Trimethylcyclohexane	0.047	SC-QE06-SD-903	(1.00,1.50)	j	25.8
1.2,4-Trimethylbenzene	0.0085	SC-QE06-SD-903	(1.00,1.50)	j	25.8
1,2-Dichlorobenzene	0.088	SC-QE02-SD-902	(0.50,1.00)	J	17.0
1.3-Dichlorobenzene	0.022	SC-QE03-SD-1001	(0.00,0.50)	j	19.0
1.4-Dichlorobenzene	0.03	SC-QE03-SD-1001	(0.00,0.50)	,	19.0
1-bromoadamantane	1.9	SC-QE02-SD-1001	(0.00,0.50)	j	26.8
1-Decene	0.017	SC-QW02-SD-901	(0.00,0.50)	† 	69.8
1-Ethyl-3-methylcyclohexane (c,t)		SC-QE06-SD-1001	(0.00,0.50)	j	40.9
1-Methylnaphthalene		SC-QE09-SD-1001	(0.00,0.50)	 	38.7
1-Pentene, 2,4,4-trimethyl-		SC-QW04-SD-903	(2.00,2.50)	 	38.5
1H-Indene, 2,3-dihydro-1,3-dimethyl-		SC-QE10-SD-1001	(0.00,0.50)	 	20.2
2-Bicyclo[4.3.1]decan-10-one		SC-QE09-SD-902	(0.50,1.00)	 	19.1
2-Octene, 2,6-dimethyl-		SC-QE08-SD-1001	(0.00,0.50)	 	60.1
3,5-Dimethyl-3-heptene		SC-QW03-SD-902	(0.50,1.00)		52.5
4.7-Methano-1H-indene, octahydro-		SC-QW05-SD-1001	(0.00,0.50)	1 1	19.9
4-tert-Butyltoluene		SC-QE10-SD-1001	(0.00,0.50)	,	20.2
4-Undecene, 6-methyl-		SC-QW03-SD-902	(0.50,1.00)	J	52.5
5-Eicosyne		SC-QE08-SD-1001	(0.00,0.50)	1	60.1
Adamantane, 1,3-dimethyl-	1.6	SC-QE02-SD-1001	(0.00,0.50)	J	26.8
Aromatic Hydrocarbon		SC-QE06-SD-901	(0.00,0.50)	J	66.0
Azulene		SC-QE00-3D-701	(0.50,1.00)	i j	19
Benzene, (1,1-dimethylpropyl)-		SC-QE07-SD-1002	(0.00,2.00)	 '	22.6
Benzene, (1-ethylpropyl)-		SC-QE07-SD-1003	(0.50,1.00)	 ' ' 	19
Benzene, (2-methyl-1-butenyl)-		SC-QE07-3D-1002 SC-QE11-SD-1002	(0.50,1.00)	, ,	19.6
Benzene, 1,2,4,5-tetramethyl-	0.049	SC-QE11-SD-1002	(0.50,1.00)	j	19.6
Benzene, 1,2-diethyl-		SC-QE07-SD-1002	(0.50,1.00)	j	19.0
Benzene, 1,3-dimethyl-5-(1-methylethyl)-		SC-QE07-SD-901	(0.00,0.50)	J	17.7
Benzene, 1.4-diethyl-		SC-QE07-SD-901	(0.00,0.50)	1	17.7
Benzene, 1-ethyl-2,3-dimethyl-	0.035	SC-QE08-SD-902	(0.50,1.00)	'	22.2
Benzene, 1-ethyl-2,4-dimethyl-		SC-QE07-SD-1001	(0.00,0.50)	 '	21
Benzene, 1-ethyl-3.5-dimethyl-		SC-QW02-SD-901	(0.00,0.50)	- ''	69.8
Benzene, 1-ethyl-3-(1-methylethyl)-		SC-QW02-SD-901	(0.00,0.50)	+ '	69.8
Benzene, 1-ethyl-4-(1-methylethyl)-	0.018	SC-QE07-SD-1002	(0.50,1.00)	-	19
Benzene, 1-methyl-2-(1-methylethyl)-	0.036	SC-QE07-SD-1002	(0.50,1.00)	1 1	19
Benzene, 1-methyl-3-(1-methylethyl)-	3.3	SC-QE08-SD-1002	(0.50,1.00)	+ - ;	30.9
Benzene, 1-methyl-3-propyl-	0.012	SC-QE07-SD-1002	(0.50,1.00)	,	19
Benzene, 2,4-dimethyl-1-(1-methylethyl)-		SC-QE07-SD-1002	(0.00,0.50)	J	21
Benzene, 2-ethyl-1.3-dimethyl-	0.057	SC-QE08-SD-902	(0.50,1.00)	1	22.2
Benzene, 4-ethyl-1,2-dimethyl-	0.022	SC-QE07-SD-1003	(0.00,2.00)	1 1	
Benzene, diethyl-	0.0093	SC-QE06-SD-903	(1.00,1.50)	1	22.6 25.8
Bicyclo[2,2,1]heptane, 2-butyl-	0.0066	SC-QF11-SD-902	(0.50,1.00)	1	13.5
Bievelo[3,3,1]nonane	0.015	SC-OE11-SD-1002	(0.50,1.00)	.'	19.6
Bicyclo [4,1,0]heptan-3-one, 4,7,7-trimethyl-, [TR]	0.35	SC-QE06-SD-902	(0.50,1.00)	1/	46.6
Bromofluoromethane	0.047	SC-QE06-SD-901	(0.00,0.50)	17	66.0

Analyte	Result	Client Description		Footnotes	% Water
cis-1,2-Dichloroethene	0.018	SC-OW04-SD-902	(0.50, 1.00)	J	43.1
cis-1-Ethyl-3-methyl-cyclohexane	0.057	SC-QE06-SD-1002	(0.50, 1.00)	1	41.4
Cyclic Hydrocarbon	1.4	SC-QE02-SD-1001	(0.00,0.50)	1	26.8
Cyclodecene	0.06	SC-QE06-SD-901	(0.00,0.50)	 	66.0
Cycloheptane, methyl-		SC-QE06-SD-901	(0.00,0.50)	J	66.0
Cyclohexane, (2-methylpropyl)-		SC-QE05-SD-1001	(0.00,0.50)	J	23.1
Cyclohexane, 1.1,2.3-tetramethyl-		SC-QE06-SD-903	(1.00, 1.50)	J	25.8
Cyclohexane, 1,1,2-trimethyl-		SC-QE06-SD-902	(0.50, 1.00)	J	46.6
Cyclohexane, 1,1,3,5-tetramethyl-,trans-		SC-QW02-SD-902	(0.50, 1.00)	 	22.5
Cyclohexane, 1,1,3-trimethyl-	2.4	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Cyclohexanc, i.ldimethyl-2-propyl-		SC-QE06-SD-1002	(0.50, 1.00)	j	41.4
Cyclohexane, 1,2,3-trimethyl-		SC-OW03-SD-901	(0.00,0.50)	J	33.8
Cyclohexane, 1,2,3-trimethyl-, (1.alpha.,2.alpha.		SC-QE06-SD-901	(0.00,0.50)	j	66.0
Cyclohexane, 1,2,3-trimethyl-,(1,alpha,.2,beta!	0.04	SC-OE06-SD-1002	(0.50, 1.00)	<u> </u>	41.4
Cyclohexane, 1,2,4-trimethyl-		SC-QW03-SD-901	(0.00,0.50)	 	33.8
Cyclohexane, 1,2,4-trimethyl-,(1,alpha,,2,beta!	0.027	SC-QE06-SD-1001	(0.00,0.50)	 	40.9
Cyclohexane, 1,2-diethyl-1-methyl-	1.4	SC-QE02-SD-1001	(0.00,0.50)		26.8
Cyclohexane, 1,2-diethyl-3-methyl-	1.2	SC-QE08-SD-1002	(0.50,1.00)	1	30.9
Cyclohexane, 1,2-dimethyl-, cis-		SC-OE06-SD-903	(1.00,1.50)	 	25.8
Cyclohexane, 1.3-dimethyl-, trans-	3.2	SC-QE08-SD-1002	(0.50,1.00)	T J	30.9
Cyclohexane, 1,4-dimethyl-		SC-OE06-SD-1002	(0.50,1.00)	 	41.4
Cyclohexane, 1-ethyl-2-methyl-, cis-		SC-QW03-SD-901	(0.00,0.50)	1	33.8
Cyclohexane, 1-ethyl-4-methyl-, cis-		SC-QE06-SD-902	(0.50,1.00)	1	46.6
Cyclohexane, 1-ethyl-4-methyl-,trans-	5	SC-QE08-SD-1002	(0.50,1.00)	†	30.9
Cyclohexane, 1-methyl-2-propyl-	0.18	SC-QE06-SD-902	(0.50,1.00)	† 	46.6
Cyclohexane, 2,4-diethyl-1-methyl-	0.099	SC-QE06-SD-901	(0.00,0.50)	 	66.0
Cyclohexane, 2-butyl-1,1,3-trimethyl-	0.12	SC-QE06-SD-1001	(0.00,0.50)	,	40.9
Cyclohexane, 2-ethyl-1,3-dimethyl-	0.011	SC-QE02-SD-902	(0.50,1.00)	j	17.0
Cyclohexane, butyl-	1.7	SC-OE08-SD-1002	(0.50,1.00)	1 - 1	30.9
Cyclohexane, ethyl-	0.012	SC-QE07-SD-1001	(0.00,0.50)	j	21
Cyclohexane, hexyl-	0.021	SC-QW03-SD-901	(0.00,0.50)	J	33.8
Cyclohexane, methyl-	13	SC-QE08-SD-1002	(0.50,1.00)	j	30.9
Cyclohexane, pentyl-	0.19	SC-QW03-SD-903	(1.00,2.00)	j	23.9
Cyclohexane, propyl-	3.1	SC-QE08-SD-1002	(0.50,1.00)	j	30.9
Cyclohexanone, 2-ethyl-	0.091	SC-QE06-SD-1002	(0.50,1.00)	j	41.4
Cyclohexanone, 2-methyl-5-(1-methylethenyl)-, tr!	0.02	SC-QE09-SD-902	(0.50,1.00)	Jz	19.1
Cyclopentane, 1-methyl-1-(2-methyl-2-propenyl)-	0.22	SC-QE02-SD-1001	(0.00,0.50)	J	26.8
Cyclopentane, 1-methyl-2-propyl-	0.012	SC-QE11-SD-1002	(0.50,1.00)	J .	19.6
Cyclopentane, 1-methyl-3-(2-methylpropyl)-	1.2	SC-QE08-SD-1002	(0.50, 1.00)	1	30.9
Cyclopropane, 1,2-dimethyl-, trans-		SC-QE06-SD-903	(1.00,1.50)	J	25.8
Cyclopropane, 1-(2-methylbutyl)-1-methylpropyl)-	0.033	SC-QE02-SD-902	(0.50, 1.00)	J	17.0
Cyclopropane, 1-butyl-1-methyl-2-propyl-		SC-QW03-SD-901	(0.00,0.50)	J	33.8
Cyclopropane, 1-methyl-2-pentyl-		SC-QE02-SD-902	(0.50,1.00)	J	17.0
Cylohexane, 1,3,5-trimethyl-	1	SC-QW02-SD-902	(0.50,1.00)	J	22.5
Decane	0.013	SC-QW04-SD-903	(2.00,2.50)	J	38.5
Decane, 2,6,6-trimethyl-	0.011	SC-QE02-SD-902	(0.50,1.00)		17.0
Decane, 2-methyl-	1	SC-QE10-SD-1002	(0.50,1.00)	J	19.7
Decane, 3.3.4-trimethyl-	0.16	SC-QE08-SD-1001	(0.00,0.50)	j	60.1
Decane, 3-methyl-	1.2	SC-QE08-SD-1002	(0.50,1.00)	1	30.9
Decane, 4-methyl-	0.4	SC-QE06-SD-902	(0.50,1.00)	J	46.6
lis i	0,032	SC-QE05-SD-1001	(0.00,0.50)		23.1
Dodecane	0.052	12C - OLON-213-1001	(0.00,0.20)	,	

Analyte	Analyte Result Client Description		Footnotes	% Water	
Dodecane, 6-methyl-	0.12	SC-QE06-SD-1002	(0.50, 1.00)	J	41.4
Heptane	6.4	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Heptane, 2-methyl-	12	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Heptane, 3-ethyl-2-methyl-	0.17	SC-QW03-SD-902	(0.50, 1.00)]	52.5
Heptane, 4-propyl-	0.007	SC-QE09-SD-902	(0.50, 1.00)	J	19.1
Heptane, 5-ethyl-2-methyl-	0.013	SC-QE09-SD-902	(0.50, 1.00)	J	19.1
Hexane	0.17	SC-QE08-SD-1001	(0.00,0.50)	J	60.1
n-Amylcyclohexane	0.12	SC-QE06-SD-1002	(0.50,1.00)	J	41.4
n-Propylbenzene	0.011	SC-QE11-SD-1002	(0.50, 1.00)	J	19.6
Naphthalene	0.19	SC-QE07-SD-1001	(0.00,0.50)	J	21
Naphthalene, 1,2,3,4-tetrahydro-1-methyl-	0.0093	SC-QE10-SD-1001	(0.00,0.50)	J	20.2
Naphthalene, 1,2,3,4-tetrahydro-5-methyl-	0.0095	SC-QE10-SD-1001	(0.00, 0.50)	J	20.2
Naphthalene, decahydro-	0.14	SC-QW03-SD-902	(0.50, 1.00)	J	52.5
Naphthalene, decahydro-, trans-	3.7	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Naphthalene, decahydro-2,3-dimethyl-	0.063	SC-QE01-SD-1001	(0.00,0.50)	J	55.6
Naphthalene, decahydro-2,6-dimethyl-	0.32	SC-QE01-SD-1001	(0.00, 0.50)	J	55.6
Naphthalene, decahydro-2-methyl-	2.7	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Nonane, 2-methyl-	0.029	SC-QE05-SD-1001	(0.00, 0.50)	J	23.1
Nonane, 2-methyl-3-methylene-	0.039	SC-QE06-SD-901	(0.00, 0.50)	J	66.0
Nonane, 3-methyl-	0.011	SC-QE02-SD-901	(0.00, 0.50)	J	15.6
Nonane, 5-butyl-	0.091	SC-QE06-SD-1001	(0.00,0.50)	j	40.9
Nonane, 5-methyl-5-propyl-	0.069	SC-QE06-SD-1002	(0.50, 1.00)	j	41.4
Octane	3.6	SC-QE08-SD-1002	(0.50, 1.00)	j	30.9
Octane, 2,3,6-trimethyl-	0.085	SC-QE06-SD-901	(0.00,0.50)	j	66.0
Octane, 2,6-dimethyl-	0.036	SC-QE06-SD-1001	(0.00,0.50)	J	40.9
Octane, 3,6-dimethyl-	2.5	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Octane, 3-ethyl-	0.094	SC-QW03-SD-903	(1.00,2.00)	J	23.9
Octane, 3-methyl-	2	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Octane, 4-ethyl-	0.071	SC-QW03-SD-902	(0.50, 1.00)	J	52.5
Octane, 4-methyl-	3.7	SC-QE08-SD-1002	(0.50, 1.00)	J	30.9
Octane, 6-ethyl-2-methyl-	0.053	SC-QE06-SD-901	(0.00,0.50)	J	66.0
Oxygenated Hydrocarbon	0.17	SC-QW03-SD-903	(1.00, 2.00)	J	23.9
p-Isopropyltoluene (p-Cymene)	0.069	SC-QE07-SD-1002	(0.50, 1.00)	.]	19
Saturated Hydrocarbon	0.76	SC-QE06-SD-902	(0.50,1.00)	J	46.6
sec-Butylbenzene	0.016	SC-QE11-SD-1002	(0.50, 1.00)	J	19.6
Siloxane	0.47	SC-QW03-SD-902	(0.50, 1.00)]	52.5
Tricyclo[3.3.1.13.7]decane	0.95	SC-QE02-SD-1001	(0.00,0.50)	J	26.8
Tridecane	0.42	SC-QE06-SD-1001	(0.00,0.50)	J	40.9
Undecane	0.026	SC-QW04-SD-903	(2.00,2.50)	.1	38.5
Undecane, 4,6-dimethyl-	0.17	SC-QW03-SD-902	(0.50, 1.00)	J	52.5
Undecane, 4,7-dimethyl-	0.024	SC-QE01-SD-1001	(0.00,0.50)	I	55.6
Undecane, 6,6-dimethyl-	0.015	SC-QE06-SD-901	(0.00,0.50)	J	66.0
Unknown	8.1	SC-QE02-SD-1001	(0.00,0.50)	J	26.8
Unsaturated Hydrocarbon	().49	SC-QE06-SD-902	(0.50, 1.00)	ı	46.6

	Frequency of		Maximum	Minimum
Analyte	Detection	Average Result	Result	Result
Semivolatile Organics - Method 8270 (mg/L)				
1,1,2,2-Tetrachloroethane	1	3.229	9.6	0.017
1,1,2-Trichloroethane	1	0.033	0.033	0.033
1,2-Propanediamine	1	0.006	0.0063	0.0063
1,3,5-Cycloheptatriene	1	0.005	0.0047	0.0047
1,3-Cyclopentanedione, 2-bromo-	3	0.010	0.017	0.0067
1,3-Propanediol, 2,2-dimethyl-	1	0.006	0.006	0.006
1-Hexanol, 2-ethyl-	1	0.006	0.006	0.006
1-Propene, 1,2,3,3-tetrachloro-	1	0.016	0.016	0.016
1-Propene, 1.1.2.3-tetrachloro-	!	0.290	0.29	0.29
1H-Indol-5-ol	5	0.059	0.091	0.012
2,4-Imidazolidinedione, 1-(hydroxymethyl)-5,5-di	1	0.004	0.004	0.004
2-Butenoic acid, 4-nitrophenyl ester, (E)-	1	0.004	0.0041	0.0041
2-Pentanol, 3-methyl-	1	0.041	0.041	0.041
2-Pyridinecarbonitrile	10	0.010	0.052	0.0042
2-Pyrrolidinone, 1-methyl-	3	0.029	0.075	0.0046
2H-Cyclopenta[d]pyridazine, 2-methyl-	1	0.082	0.082	0.082
2H-Inden-2-one, 1,3-dihydro-	1	0.005	0.0046	0.0046
2H-Indol-2-one, 1,3-dihydro-	13	0.058	0.25	0.0074
3-Hexanol, 4-methyl-	2	0.034	0.041	0.027
3-Hydroxy-3-methyl-2-butanone	5	0.012	0.026	0.0047
3-Methyl-3-chloro-1-butene	1	0.017	0.017	0.017
3-Pyridinecarbonitrile	1	0.008	0.0081	0.0081
4-Morpholinepropanamine	1	0.018	0.018	0.018
4-Pyridinecarbonitrile	6	0.011	0.032	0.0043
5,6-Decanedione	1	0.011	0.018	0.0049
Benzene, 1-isocyanato-2-methyl-	1	0.031	0.031	0.031
Benzene, 1-isocyanato-3-methyl-	3	0.028	0.042	0.0023
Benzene, 1-isocyanato-4-methyl-	1	0.040	0.04	0.04
Benzene, dichloromethoxy-	1	0.010	0.0096	0.0096
Butanamide	3	0.011	0.018	0.0078
Butane, 2,3-dichloro-2-methyl-	1	0.005	0.0045	0.0045
Butane, 2-methoxy-2-methyl-	7	0.139	0.18	0.086
Butane, 2-methoxy-2-methyl-	2	0.110	0.12	0.1
Cyclooctane	1	0.006	0.0062	0.0062
Ethanol, 2-(2-methoxyethoxy)-	2	0.009	0.012	0.0053
Ethanol, 2-(diethylamino)-	1	0.410	0.41	0.41
Ethanol, 2-butoxy-	5	0.007	0.009	0.0041
Ethylene, 1-bromo-2-chloro-1,2-difluoro-	1	0.010	0.01	0.01
Formic acid, hexyl ester	1	0.010	0.0097	0.0097
Furan, tetrahydro-3-methyl-	4	0.037	0.055	0.012
Halogenated Compound	1	0.008	0.01	0.0055
Heptanoic acid, 3-nitrophenyl ester	1	0.020	0.02	0.02
Heptanoic acid, anhydride	2	0.011	0.017	0.005

	Frequency of		Maximum	Minimum
Analyte	Detection	Average Result	Result	Result
Hexadecane	1	0.005	0.005	0.005
Hexadecane, 2,6,11,15-tetramethyl-	1	0.005	0.005	0.005
Isopropylamine	1	0.006	0.006	0.006
Methylene chloride	2	0.450	0.58	0.32
Morpholine	4	0.159	0.75	0.0061
Morpholine, 4-methyl-	1	0.009	0.0091	0.0091
Nitrogen Compound	3	0.016	0.039	0.0041
Nitrogen Compound	7	0.005	0.0079	0.004
Octanethioic acid, S-hexyl ester	2	0.018	0.032	0.0046
Oxygenated Hydrocarbon	5	0.023	0.056	0.0052
Pentachloroethane	1	0.190	0.19	0.19
Propane, 2-ethoxy-2-methyl-	3	0.039	0.055	0.027
Propylene Glycol	2	0.099	0.14	0.058
Saturated Hydrocarbon	3	0.021	0.06	0.0041
Silacyclohexane, 1,1-dimethyl-	1	0.010	0.01	0.01
Toluene	1	0.021	0.021	0.021
Trichloroethene	1	0.600	0.6	0.6
Unknown	3	0.020	0.045	0.0065
Volatile Organics - Method 8260 (mg/L)				
Butanoic acid, 3-methyl-	1	0.013	0.013	0.013
Siloxane	4	0.008	0.016	0.0058
Urea	1	0.006	0.0061	0.0061

TABLE B-12
MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATED SAMPLE LOCATIONS
FOR TENTATIVELY IDENTIFIED COMPOUNDS IN SURFACE WATER
THIRD YEAR LONG-TERM MONITORING

Analyte	Result	Client	Footnotes	
Semivolatile Organics - Method 8270 (mg/L)				
1,1,2,2-Tetrachloroethane	9.6	SC-QE09-SW-1001	(0.00,0.00)	J
1,1,2-Trichloroethane	0.033	SC-QE09-SW-1001	(0.00,0.00)	J
1,2-Propanediamine	0.0063	SC-QE10-SW-1001	(0.00,0.00)	J
1,3,5-Cycloheptatriene	0.0047	SC-QE08-SW-1001	(0.00,0.00)	J
1,3-Cyclopentanedione, 2-bromo-	0.017	SC-QE04-SW-1001	(0.00,0.00)	J
1,3-Propanediol, 2,2-dimethyl-	0.006	SC-QE03-SW-901	(0.00,0.00)	J
1-Hexanol, 2-ethyl-	0.006	SC-QW06-SW-901	(0.00,0.00)	J
1-Propene, 1,2,3,3-tetrachloro-	0.016	SC-QE09-SW-1001	(0.00,0.00)	J
1-Propene, 1.1.2.3-tetrachloro-	0.29	SC-QE09-SW-1001	(0.00,0.00)	J
1H-Indol-5-ol	0.091	SC-QE08-SW-901	(0.00,0.00)	J
2,4-Imidazolidinedione, 1-(hydroxymethyl)-5,5-di	0.004	SC-QE11-SW-1001	(0.00,0.00)	Jz
2-Butenoic acid, 4-nitrophenyl ester, (E)-	0.0041	SC-QE10-SW-1001	(0.00,0.00)	J
2-Pentanol, 3-methyl-	0.041	SC-QE09-SW-1001	(0.00,0.00)	J
2-Pyridinecarbonitrile	0.052	SC-QE02-SW-901	(0.00,0.00)	J
2-Pyrrolidinone, 1-methyl-	0.075	SC-QW03-SW-901	(0.00,0.00)	J
2H-Cyclopenta[d]pyridazine, 2-methyl-	0.082	SC-QE11-SW-1001	(0.00,0.00)	J
2H-Inden-2-one, 1,3-dihydro-	0.0046	SC-QE08-SW-1001	(0.00,0.00)	J
2H-Indol-2-one, 1,3-dihydro-	0.25	SC-QE02-SW-901	(0.00,0.00)	J
3-Hexanol, 4-methyl-	0.041	SC-QE04-SW-901	(0.00,0.00)	J
3-Hydroxy-3-methyl-2-butanone	0.026	SC-QE04-SW-1001	(0.00,0.00)	J
3-Methyl-3-chloro-1-butene	0.017	SC-QE09-SW-1001	(0.00,0.00)	J
3-Pyridinecarbonitrile	0.0081	SC-QE08-SW-901	(0.00,0.00)	J
4-Morpholinepropanamine	0.018	SC-QW05-SW-901	(0.00,0.00)	J
4-Pyridinecarbonitrile	0.032	SC-QE03-SW-901	(0.00,0.00)	J
5,6-Decanedione	0.018	SC-QE02-SW-901	(0.00,0.00)	J
Benzene, 1-isocyanato-2-methyl-	0.031	SC-QW06-SW-901	(0.00,0.00)	J
Benzene, 1-isocyanato-3-methyl-	0.042	SC-QE08-SW-1001	(0.00,0.00)	J
Benzene, 1-isocyanato-4-methyl-	0.04	SC-QE06-SW-1001	(00.0,00.0)	J
Benzene, dichloromethoxy-	0.0096	SC-QE04-SW-1001	(0.00,0.00)	J
Butanamide	0.018	SC-QE04-SW-1001	(0.00,0.00)	J
Butane, 2,3-dichloro-2-methyl-	0.0045	SC-QE07-SW-901	(0.00,0.00)	J
Butane, 2-methoxy-2-methyl-	0.12	SC-QE09-SW-1001	(00.0,00.0)	JB
Butane, 2-methoxy-2-methyl-	0.18	SC-QE06-SW-1001	(00.0,00.0)	J
Cyclooctane	0.0062	SC-QW05-SW-901	(0.00,0,00)	J
Ethanol, 2-(2-methoxyethoxy)-	0.012	SC-QE02-SW-1001	(00.0,000)	J
Ethanol, 2-(diethylamino)-	0.41	SC-QW03-SW-901	(0.00,0.00)	J
Ethanol, 2-butoxy-	0.009	SC-QE02-SW-1001	(00.0,000)	J
Ethylene, 1-bromo-2-chloro-1,2-difluoro-	0.01	SC-QE01-SW-901	(0.00,0.00)	J
Formic acid, hexyl ester	0.0097	SC-QW06-SW-901	(0.00,0.00)	J
Furan, tetrahydro-3-methyl-	0.055	SC-QE01-SW-901	(00.0,00.0)	J
Halogenated Compound	0.01	SC-QE01-SW-901	(00.0,00.0)	J
Heptanoic acid, 3-nitrophenyl ester	0.02	SC-QE02-SW-901	(0.00,0.00)	J
Heptanoic acid, anhydride	0.017	SC-QE02-SW-901	(00,0,00,0)	J.
Hexadecane	0.005	SC-QE03-SW-1001	(0,00,0,00)	J

TABLE B-12

MAXIMUM DETECTED CONCENTRATIONS AND ASSOCIATED SAMPLE LOCATIONS
FOR TENTATIVELY IDENTIFIED COMPOUNDS IN SURFACE WATER
THIRD YEAR LONG-TERM MONITORING

Analyte	Result	Client Description		Footnotes	
Hexadecane, 2,6,11,15-tetramethyl-	0.005	SC-QE03-SW-1001	(0.00,0.00)	J	
Isopropylamine	0.006	SC-QE11-SW-1001	(0.00,0.00)	J	
Methylene chloride	0.58	SC-QE10-SW-1001	(0.00,0.00)	J	
Morpholine	0.75	SC-QW03-SW-901	(00.0,00.0)	J	
Morpholine, 4-methyl-	0.0091	SC-QW03-SW-901	(00.0,00,00)	J	
Nitrogen Compound	0.0079	SC-QE06-SW-1001	(0.00,0.00)	JB	
Nitrogen Compound	0.039	SC-QE03-SW-901	(00.0,00.0)	J	
Octanethioic acid, S-hexyl ester	0.032	SC-QE02-SW-901	(00.0,00.0)	J	
Oxygenated Hydrocarbon	0.056	SC-QE07-SW-901	(00.0,00.0)	J	
Pentachloroethane	0.19	SC-QE09-SW-1001	(0.00,0.00)	J	
Propane, 2-ethoxy-2-methyl-	0.055	SC-QE01-SW-1001	(0.00,0.00)	J	
Propylene Glycol	0.14	SC-QW06-SW-901	(00.00,0.00)	J	
Saturated Hydrocarbon	0.06	SC-QE02-SW-901	(0.00,0.00)	J	
Silacyclohexane, 1,1-dimethyl-	0.01	SC-QE03-SW-901	(00.0,00.0)	J	
Toluene	0.021	SC-QE06-SW-901	(0.00,0.00)	J	
Trichloroethene	0.6	SC-QE09-SW-1001	(00.0,00.0)	J	
Unknown	0.045	SC-QE02-SW-901	(0.00,0.00)	J	
Volatile Organics - Method 8260 (mg/L)					
Butanoic acid, 3-methyl-	0.013	SC-QW07-SW-901	(0.00,0.00)	J	
Siloxane	0.016	SC-QE07-SW-901	(0.00,0.00)	J	
Urea	0.0061	SC-QE02-SW-901	(0.00,0.00)	J	